Name: LEY		Hour:	Date:
-----------	--	-------	-------

NOTES: Section 2.1 - Represent Relations and Functions

Goals: #1 - I can determine whether a relation is a function.

- #2 I can state the domain and range of a relation.
- #3 I can determine whether a function is linear and evaluate functions for given inputs.
- #4 I can graph a linear function.

Homework: Lesson 2.1 Worksheet

Exploration #1: Work with a partner.

- 1. What do you know about a relation?
- 2. What do you know about a function?

Notes:

Examples:

Ordered Pairs	Table	Graph	Mapping Diagram
(-2, 2)	x y	,] 4 y	Input Output
(-2, -2)	-2 2		-2 -2
(0, 1)	-2 -	2 4 4 7	0 2
(3, 1)	0 1		3 1
	3 1		

A + 1000 is a relation where each input gives exactly 1 output.

Example #1: Determine whether each relation represents a function. Explain your reasoning.

Input, x Output, y

No, the input 3 has two different outputs (10:11)

D: \(\frac{1,2,3}{}\) R: \(\frac{48,9,10,11}{}\)

2.

No, the inputs 5 : 7 have more than one output

3. (-2, 0), (-1, 0), (-1, 1), (0, 1), (1, 2), (2, 2)
Yes, every input has exactly one output

D:{-Z,-1,0,1,2} R: {0,1,2}

Notes:

We can use the <u>VLYTICAL LIME + LSF</u> to determine if a graph is a function.

Examples:

NO

Exploration #2: Work with a partner.

- 1. What do you know about the domain of a function?
- 2. What do you know about the range of a function?

Notes:

The domain of a function is the set of all possible input values.

The YOUR of a function is the set of all possible output values.

Example #2: Identify the domain and range for each relation in Example #1.

CHALLENGE: Identify the domain and range for the following.

1.

D:
$$(-\infty, \infty)$$
 R: $[-6, \infty)$

2.

D: [-6, 6] R: [-7,1] V {5}

Exploration #3: Work with a partner.

1. What are some characteristics of a *linear function*?

Notes: A _______ function that can be written in the form:

independent = Slope Sariable

Example #3: Tell whether the function is linear. Then evaluate the function for the given value of x.

1.
$$f(x) = 6x + 10$$
; $f(-3)$

2.
$$f(x) = 2x^2 + 4x - 1$$
; $f(-1)$
NO, NOT LINEAR
 $f(-1) = 2(-1)^2 + 4(-1) - 1$
 $= 2(1) + 4(-1) - 1$
 $= 2 - 4 - 1$

Example #4: Graph the following equations by using a table of values. = $\begin{bmatrix} -3 \\ -3 \end{bmatrix}$

1.
$$y = -2x - 1$$

x	-2	-1	0	1	2
у	3	-1	-1	-3	-5

$$2. \ \ y = -\frac{3}{4}x - 1$$

x	-8	-4	0	4	8
y	5	2	-1	-4	-7

CHALLENGE: Graph the following equations using any method.

1.
$$-8 = 16x$$

2.
$$3x + 9y = 6$$

