NOTES: Section 2.1 - Represent Relations and Functions

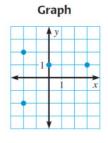
Goals: #1 - I can determine whether a relation is a function.

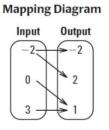
- #2 I can state the domain and range of a relation.
- #3 I can determine whether a function is linear and evaluate functions for given inputs.
- #4 I can graph a linear function.

Homework: Lesson 2.1 Worksheet

Exploration #1: Work with a partner.

- 1. What do you know about a *relation*?
- 2. What do you know about a *function*?

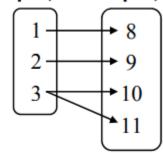

Notes:


A ______ is a mapping, or pairing, of two or more variables.

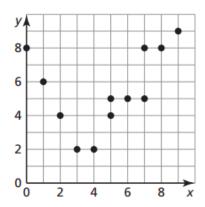
Examples:

Ordered Pairs						
(-2, 2)						
(-2, -2)						
(0, 1)						
(3, 1)						

x	у
-2	2
-2	-2
0	1
3	1



A _____ is a relation where each input gives exactly ____ output.



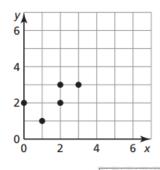
Example #1: Determine whether each relation represents a function. Explain your reasoning.

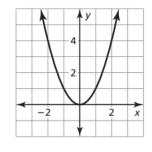
Input, x Output, y 1.

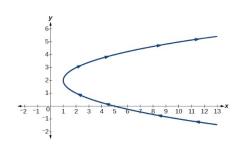
2.

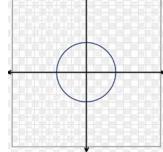
D: _____ R: ____

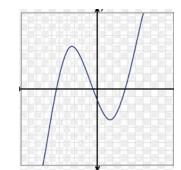
D: _____ R: ____


3. (-2, 0), (-1, 0), (0, 1), (1, 2), (2, 2)


D: _____ R: ____


Notes:


We can use the ______ to determine if a graph is a function.

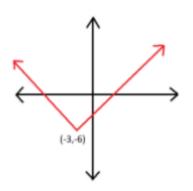

Examples:

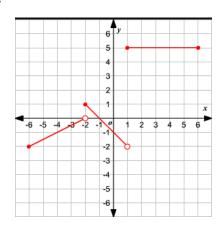
Exploration #2: Work with a partner.

- 1. What do you know about the *domain* of a function?
- 2. What do you know about the *range* of a function?

Notes:

The _____ of a function is the set of all possible input values.


The ______ of a function is the set of all possible output values.


Example #2: Identify the domain and range for each relation in Example #1.

CHALLENGE: Identify the domain and range for the following.

1.

2.

D: _____ R: ____

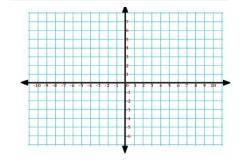
D: _____ R: ____

Exploration #3: Work with a partner.

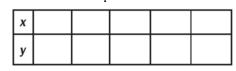
1. What are some characteristics of a *linear function*?

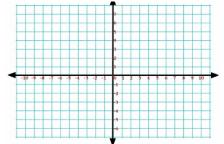
Notes: A ______ is a function that can be written in the form:

Example #3: Tell whether the function is linear. Then evaluate the function for the given value of *x*.

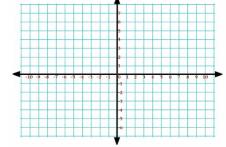

1.
$$f(x) = 6x + 10$$
; $f(-3)$

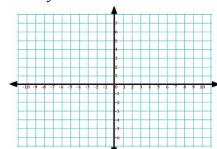
2.
$$f(x) = 2x^2 + 4x - 1$$
; $f(-1)$


Example #4: Graph the following equations by using a table of values.


1.
$$y = -2x - 1$$

X			
y			


2.
$$y = -\frac{3}{4}x - 1$$



CHALLENGE: Graph the following equations using any method.

1.
$$-8 = 16x$$

2.
$$3x + 9y = 6$$

