Scientific Notation Scientists need to express small measurements, such as the mass of the proton at the center of a hydrogen atom (0.000 000 000 000 000 000 000 001 673 kg), and large measurements, such as the temperature at the center of the Sun (15 000 000 K). To do this conveniently, they express the numerical values of small and large measurements in scientific notation, which has two parts. A number in which only one digit is placed to the left of the decimal $\rightarrow N \times 10^{n} \leftarrow$ Thus, the temperature of the Sun, 15 million kelvins, is written as 1.5×10^7 K in scientific notation. **Positive Exponents** Express 1234.56 in scientific notation. 1234.56 Each time the decimal place is moved one place to the left. $1234.56 \times 10^0 = 123.456 \times 10^1$ $123.456 \times 10^{1} = 12.3456 \times 10^{2}$ $12.3456 \times 10^2 = 1.23456 \times 10^3$ the An exponent of 10 by which the number is multiplied exponent is increased by one. **Negative Exponents** Express 0.006 57 in scientific notation. 1.23456×10^{3} 0.006 57 Each time the decimal place is moved one place to the right, $0.006 57 \times 10^{0} = 0.0657 \times 10^{-1}$ $0.0657 \times 10^{-1} = 0.657 \times 10^{-2}$ $0.657 \times 10^{-2} = 6.57 \times 10^{-3}$ exponent is decreased by one. the 6.57×10^{-3} ### **SCIENTIFIC NOTATION** Name _____ Scientists very often deal with very small and very large numbers, which can lead to a reformation when counting zeros! We have learned to express these numbers as powers of 10. Scientific notation takes the form of M \times 10° where 1 \leq M < 10 and "n" represents the number of decimal places to be moved. Positive n indicates the standard form is a large number. Negative n indicates a number between zero and one. **Example 1:** Convert 1,500,000 to scientific notation. We move the decimal point so that there is only one digit to its left, a total of 6 places. $1,500,000 = 1.5 \times 10^6$ **Example 2:** Convert 0.000025 to scientific notation. For this, we move the decimal point 5 places to the right. $0.000025 = 2.5 \times 10^{5}$ (Note that when a number starts out less than one, the exponent is always negative.) Convert the following to scientific notation. Convert the following to standard notation. 1. $$1.5 \times 10^3 =$$ 2. $$1.5 \times 10^3 =$$ 3. $$3.75 \times 10^{-2} =$$ 4. $$3.75 \times 10^2 =$$ 5. $$2.2 \times 10^5 =$$ 6. $$3.35 \times 10^{-1} =$$ 7. $$1.2 \times 10^4 =$$ 8. $$1 \times 10^4 =$$ 9. $$1 \times 10^{-1} =$$ 10. $$4 \times 10^{\circ} =$$ ## **Scientific Notation** | 1. | Express each of the following numbers in scientific notation. | | | | |----|---|---|--|--| | | a. | 230 | | | | | b. | 5601 | | | | | c. | 14 100 000 | | | | | d. | 56 million | | | | | e. | 2/10 | | | | | f. | 0.450 13 | | | | | g. | 0.089 | | | | | h. | 0.000 26 | | | | | i. | 0.000 000 698 | | | | | j. | 12 thousandth | | | | 2 | Es | apress each of the following measurements in scientific notation. | | | | | | speed of light in a vacuum, 299 792 458 m/s | | | | | b. | number of seconds in a day, 86 400 s | | | | | C. | mean radius of Earth, 6378 km | | | | | d | density of oxygen gas at 0°C and pressure of 101 kPa, 0.001 42 g/mL | | | | | e | radius of an argon atom, 0.000 000 000 098 m | | | | | | | | | | Name | | Date | | |------|---|----------------------------------|----------| | W | rite the number(s) given in each problem using scientific notation | on. | | | 1. | The human eye blinks an average of 4,200,000 times a year. | | _ | | 2. | A computer processes a certain command in 15 nanoseconds. (A r second.) In decimal form, this number is 0. 000 000 015. | nanosecond is one billionth of a | | | 3. | There are 60,000 miles (97,000 km) in blood vessels in the human | | _ | | | mi | | _ km | | 4. | The highest temperature produced in a laboratory was 920,000,000 Tokamak Fusion Test Reactor in Princeton, NJ, USA. | F (511,000,000 C) at the | | | | F | | _ c | | 5. | The mass of a proton is 0.000 000 000 000 000 000 001 673 gr | rams. | _ g | | 6. | The mass of the sun is approximately 1,989,000,000,000,000,000,0 | - | | | 7. | The cosmos contains approximately 50,000,000,000 galaxies. | | _ g
- | | 8. | A plant cell is approximately 0.00001276 meters wide. | | _ m | | Wri | te the number(s) given scientific notation in standard form. | | | | 9. | The age of earth is approximately 4.5 X 10 ⁹ years. | | _ yr | | 10. | The weight of one atomic mass unit (a.m.u.) is 1.66 x 10 ⁻²⁷ kg. | | | | | | | kg | # **Operations with Scientific Notation** #### **Addition and Subtraction** Before numbers in scientific notation can be added or subtracted, the exponents must be equal. Not equal $$\longrightarrow$$ Equal \longrightarrow (3.4 × 10²) + (4.57 × 10³) = (0.34 × 10³) + (4.57 × 10³) The decimal is moved to the left to increase the exponent. = (0.34 + 4.57) × 10³ = 4.91 × 10³ #### Multiplication When numbers in scientific notation are multiplied, only the number is multiplied. The exponents are added. $$(2.00 \times 10^{3})(4.00 \times 10^{4}) = (2.00)(4.00) \times 10^{3+4}$$ $$= 8.00 \times 10^{7}$$ #### **Division** When numbers in scientific notation are divided, only the number is divided. The exponents are subtracted. $$\frac{9.60 \times 10^{7}}{1.60 \times 10^{4}} = \frac{9.60}{1.60} \times 10^{7-4}$$ $$= 6.00 \times 10^{3}$$ # Operations with Scientific Notation - 1. Perform the following operations and express the answers in scientific notation. - **a.** $(1.2 \times 10^5) + (5.35 \times 10^6)$ - **b.** $(6.91 \times 10^{-2}) + (2.4 \times 10^{-3})$ - **c.** $(9.70 \times 10^6) + (8.3 \times 10^5)$ - **d.** $(3.67 \times 10^2) (1.6 \times 10^1)$ - **e.** $(8.41 \times 10^{-5}) (7.9 \times 10^{-6})$ - **f.** $(1.33 \times 10^5) (4.9 \times 10^4)$ - 2. Perform the following operations and express the answers in scientific notation. - **a.** $(4.3 \times 10^8) \times (2.0 \times 10^6)$ - **b.** $(6.0 \times 10^3) \times (1.5 \times 10^{-2})$ - **c.** $(1.5 \times 10^{-2}) \times (8.0 \times 10^{-1})$ - **d.** $\frac{7.8 \times 10^3}{1.2 \times 10^4}$ - **e.** $\frac{8.1 \times 10^{-2}}{9.0 \times 10^2}$ - $\textbf{f.} \ \ \frac{6.48 \times 10^5}{(2.4 \times 10^4)(1.8 \times 10^{-2})}$