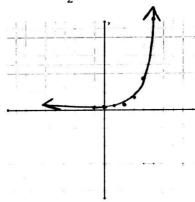
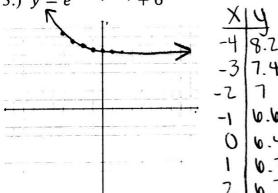

Chapter 7 Review Worksheet (7.1-7.4)


Name: <u>LEY</u>

Graph the function. Then state the domain and range.

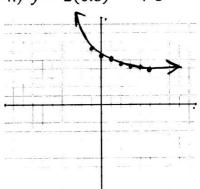
1.)
$$f(x) = -3 \cdot 2^{x+1} - 2$$

2.)
$$y = \frac{1}{2}e^{x-2}$$



XI	U
-1	0.05
0	0.01
1	0.18
2	0.5
3	1.36
4	3.69
5	3.69

domain: (-0, 0) OF IR


range: $(-\infty, -2)$

3.)
$$y = e^{-0.4(x+2)} + 6$$

domain:
$$(-\infty, \infty)$$
 Or \mathbb{R}

4.)
$$y = 2(0.8)^{x-1} + 3$$

XI	4
-1	6.13
0	5.5
١	5
7	4.6
3	4.28
4	4.02
5	382
-	3 • K = 2000;

domain: (-M, M) OR TR

range: $(6, \infty)$

5.) You deposit \$1,500 into an account that pays 7% annual interest compounded daily. Find the balance of the account after 2 years.

$$A = P(1 + f_1)^{nt}$$

 $A = 1500 (1 + \frac{0.07}{365})^{365.2}$
 $A \approx 5 [725.39]$

- 6.) You deposit \$750 in a bank account. Find the balance after 5 years for each of the A-P(1+fi)nt situations described below.
 - a.) The account pays 2.5% annual interest compounded annually. $7 750 \left(1 + \frac{9.025}{1}\right)^{(1.5)}$

$$A \sim \sqrt{8848.50}$$

b.) The account pays 2.75% annual interest compounded monthly.

$$A = 750 \left(1 + \frac{0.0775}{17}\right)^{(17.5)}$$

$$A \approx \boxed{3800.47}$$

$$A = Pert$$

c.) The account pays 3% annual interest compounded continuously.

H =
$$750 \cdot e^{0.03 \cdot 5}$$
H = $750 \cdot e^{0.03 \cdot 5}$

- 7.) From 1996 to 2001, the number of households that purchased lawn and garden products at home gardening centers increased by about 4.85% per year. In 1996, about 62 million households purchased lawn and garden products.
 - a.) Write a function giving the number of households H (in millions) that purchased lawn and garden products t years after 1996. (Remember to simplify)

$$H = V2(1+0.0485)^{t}$$
 $H = V2(1.0485)^{t}$

b.) Approximately how many households purchased lawn and garden products were purchased in 2000?

- 8.) Your new boat is depreciating at an annual rate of 4%. You purchased the boat for \$1,906.
 - a.) Write a function that models the value y of the boat over time t.

$$\frac{y=1900(1-0.04)}{(y=1900(0.96)^{t})}$$

c.) What was the approximate value of the boat in 5 years?

$$y = 1906 (0.96)^5$$

 $y \approx [51,554.10]$

Rewrite the equation in its alternate form.

9.)
$$\log_2 128 = 7$$

10.)
$$y = 5^{x+3}$$

11.)
$$\ln 5x = 2.5$$

$$e^{7.5} = 5x$$

$$12.) 10^{3x} = 50$$

$$100 50 = 3x$$

Evaluate the logarithm without using a calculator.

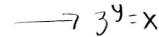
$$\left[-3\right]$$

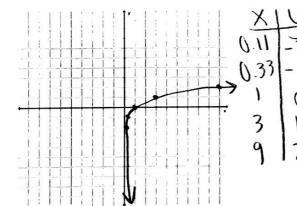
16.)
$$\log_{125} \frac{1}{5}$$

$$\left[-\frac{1}{3}\right]$$

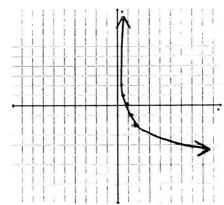
Find the inverse of the function.

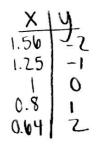
17.)
$$y = \log_5 x$$

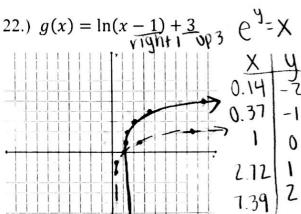

18.)
$$y = e^{x+2}$$

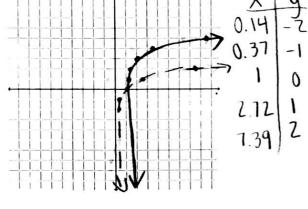

19.)
$$f(x) = \log_6(x+2)$$

$$b^{\times} = y + 2$$

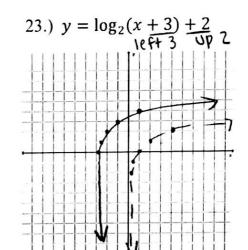

Graph the function. Then state the domain and range.

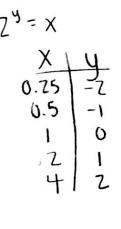

$$20.) y = \log_3 x$$





21.)
$$f(x) = \log_{4/5} x \longrightarrow (\frac{4}{5})^{9} = X$$





domain: (\,\infty) range: (- 10 10) OF 12

domain: $(-2, \infty)$

24.) Researchers have found that after 25 years of age, the average size of the pupil in a person's eye decreases. The relationship between pupil diameter d (in millimeters) and a(in years) can be modeled by $d = -2.1158 \ln a + 13.669$. What is the average diameter of a pupil for a person that is 25 years old? 50 years old?