\qquad
Simplify each expression as much as possible. (Numbers should NOT have exponents!)

1. $5^{3} \cdot 5^{5}$
2. $\left(3^{3}\right)^{2}$
3. $\left(\frac{3}{5}\right)^{2}$
4. $\frac{4^{5}}{4^{7}}$
5. $\left(\frac{1}{4}\right)^{-1}$
6. 6^{-2}

Simplify each expression as much as possible. Write your answer using only positive exponents.
7. $(5 a)^{3}$
8. $\left(3 x y^{2}\right)^{2}$
9. $\left(x^{3}\right)^{6}$
10. $\left(\frac{4}{x}\right)^{3}$
11. $\frac{x^{6}}{x^{2}}$
12. x^{-5}
13. $\frac{1}{2 x^{-2}}$
14. $4 x^{-3} y$
15. $\left(2 x^{-1} y\right)^{2}$

Rewrite the number in standard notation.
16. 8.2×10^{5}
17. 6.03×10^{4}
18. 4.51×10^{-3}

Rewrite the number in scientific notation.
19. 0.002
20. 1153
21. $3,146,000$

Simplify the expression. Write the answer in scientific notation.
22. $\left(3 \times 10^{-2}\right) \cdot\left(12 \times 10^{3}\right) \quad$ 23. $\frac{\left(24 \times 10^{3}\right)}{\left(2 \times 10^{-6}\right)}$
24. A family purchased a house for $\$ 60,000$. Each year the value of the house increased by 4%.
a. Write a model that represents the value of the house over time.
b. Find the value of the house after 8 years.
25. You buy a used car for $\$ 12,000$. It depreciates at a rate of 13% per year.
a. Write a model that represents the value of the car over time.
b. Find the value of the car after 4 years.

Tell whether the model is an exponential growth or exponential decay.
26. $y=16(1.08)^{t}$
27. $y=440(0.7)^{t}$
28. $y=60,000(2)^{t}$

