NOTES: Section 9.8 – Graphing Quadratic Inequalities

Goals: #1 - I can graph a quadratic inequality in two variables.

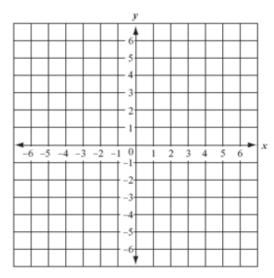
Homework: Section 9.8 Worksheet

Warm Up: Find the value of the discriminant. Then use the value to determine whether the equation has two solutions, one solution, or no real solution.

1.
$$x^2 + 3 = 0$$

1.
$$x^2 + 3 = 0$$
 2. $x^2 - 6x + 13 = 0$ 3. $x^2 - 2x + 1 = 0$

3.
$$x^2 - 2x + 1 = 0$$


Exploration #1: Work with a partner. Answer the following questions.

- 1. Which of the following ordered pairs are solutions of $y \ge x^2 3x 3$?
- a. (1, 4)

- b. (3,2) c. (4,-3) d. (0,-3)

Exploration #2: Graph the following linear inequality.

1.
$$y \le \frac{3}{4}x + 1$$

Notes:

To graph quadratic inequalities, we need to first ______ the function.

We use a _____ line for _____ and a _____ line for _____.

Then, we _____ points not on the line to determine where to _____.

Example #1: Graph the following quadratic inequalities.

1.
$$y < 2x^2 - 3x$$

2.
$$y \le -x^2 - 5x + 4$$

AOS: _____ vertex: _____ *y*-int: _____ opens: _____

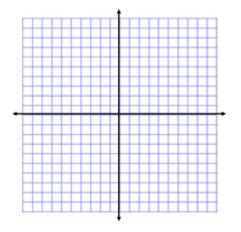
AOS: _____ vertex: _____ *y*-int: _____ opens: _____

X			
У			

X			
У			

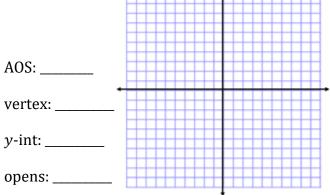
You practice: Graph the following quadratic inequalities.

1.
$$y > -x^2 - 2x + 3$$


2.
$$y \ge 2x^2 - 4x + 2$$

AOS: _____

vertex: _____


y-int: _____

opens: _____

y-int: _____

opens: _____

X			
У			

X			
У			