NOTES: Section 9.7 – Using the Discriminant

Goals: #1 - I can use the discriminant to determine the number of solutions of a quadratic equation.

Homework: Section 9.7 Worksheet

Warm Up: Use the quadratic formula to solve the equation. Write your answer in simplest radical form.

1.
$$4x^2 - 8x = -3$$

 $4x^2 - 8x + 3 = 0$

1.
$$4x^{2} - 8x = -3$$

 $4x^{2} - 8x + 3 = 0$
 $4x^{2} - 8x + 3 = 0$

Exploration #1: Work with a partner and answer the following questions.

1. Use the graph to identify the solutions of the quadratic equation:

a.
$$y = x^2 - 3x - 4$$

a.
$$y = x^2 - 3x - 4$$
 b. $y = -x^2 + 2x - 1$

c.
$$y = 2x^2 - 2x + 3$$

a.
$$y = x^2 - 3x - 4$$

 $(-3)^2 - 4(1)(-4)$

b.
$$y = -x^2 + 2x - 1$$

Marsa a.	
Name:	
i dilic.	

LI	ou	r.	
П	υu	ι.	

Notes:

In the quadratic formula, the expression b -400 is called the discriminant of the quadratic equation.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 discriminant

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ We can use the <u>distriminant</u> of a quadratic equation to determine the equation's and type of solutions

Value of discriminant	+	0	_
Number and type of solutions	2 solutions	1 solution	no real solutions
Graph of $y = ax^2 + bx + c$	y x	y x	x x

Example #1: Find the value of the discriminant. Then use the value to determine whether the equation has two solutions, one solution, or no real solution.

1.
$$\hat{x}^2 - 3x + 4 =$$
 $(-3)^2 - 4(1)(4)$
9 - 16
 $[-7]$
no real
solution

Name:			
mame.			

Hour: _____ Date: ___

Date: _____

You practice: Find the value of the discriminant. Then use the value to determine whether the equation has *two solutions, one solution,* or *no real solution.*

1.
$$x^2 + 3 = 0$$

(0)¹ - 4(1)(3)

$$2. \ x^2 - 6x = 13$$

$$x^{2}-6x-13=0$$

$$(-6)^{2}-4(1)(-13)$$

3.
$$x^2 - 2x + 1 = 0$$

$$(-7)^2-4(1)(1)$$

one solution