NOTES: Section 9.7 – Using the Discriminant

Goals: #1 - I can use the discriminant to determine the number of solutions of a quadratic equation.

Homework: Section 9.7 Worksheet

Warm Up: Use the quadratic formula to solve the equation. Write your answer in simplest radical form.

1.
$$4x^2 - 8x = -3$$

Exploration #1: Work with a partner and answer the following questions.

1. Use the graph to identify the solutions of the quadratic equation:

a.
$$y = x^2 - 3x - 4$$

b. $y = -x^2 + 2x - 1$

c.
$$y = 2x^2 - 2x + 3$$

2. Find the value of $b^2 - 4ac$ for these quadratic equations:

a.
$$v = x^2 - 3x - 4$$

solution/s:____

a.
$$y = x^2 - 3x - 4$$
 b. $y = -x^2 + 2x - 1$ c. $y = 2x^2 - 2x + 3$

c.
$$v = 2x^2 - 2x + 3$$

Name:	Hour.	Date:
Name	110u1.	Datc

Notes:

In the quadratic formula, the expression ______ is called the _____ of the quadratic equation.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

We can use the ______ of a quadratic equation to determine the equation's _____ and _____ of _____.

Value of discriminant						
Number and type of solutions						
Graph of $y = ax^2 + bx + c$	←	y x	•	y x	←	y x

Example #1: Find the value of the discriminant. Then use the value to determine whether the equation has two solutions, one solution, or no real solution.

1.
$$x^2 - 3x + 4 = 0$$

$$2. \ 2x^2 = 8x - 8$$

1.
$$x^2 - 3x + 4 = 0$$
 2. $2x^2 = 8x - 8$ 3. $x^2 - 5x + 4 = 0$

Name:	Hour:	Date:
* ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	110 011 .	2 4 4 5 5 .

You practice: Find the value of the discriminant. Then use the value to determine whether the equation has *two solutions, one solution,* or *no real solution.*

1.
$$x^2 + 3 = 0$$

2.
$$x^2 - 6x = 13$$

3.
$$x^2 - 2x + 1 = 0$$