\qquad
\qquad Date: \qquad

NOTES: Section 8.7 - Exponential Decay Functions

Goals: \#1 - I can write and graph exponential decay functions.
Homework: Section 8.7 Worksheet
Warm Up:

1. A family purchased a condo for $\$ 80,000$. Each year the value of the condo increases by 5%.
a. Write a model that represents the value of the condo over time.
b. Find the value of the condo after 6 years.
2. An initial population of 1000 starfish doubles each year for 4 years.
a. Write a model that represents the population of the starfish over time.
b. What is the starfish population after 4 years?

Exploration \#1: Tell whether the model is an exponential growth or exponential decay.

1. $y=17(1.09)^{t}$
2. $y=5500(0.8)^{t}$
3. $y=80,000(2)^{t}$
\qquad
\qquad Date: \qquad

Notes:

Another use of \qquad is to model \qquad .

A quantity is decreasing \qquad if it decreases by the same \qquad in each unit of
\qquad .
can be modeld by the equation:

$$
y=C(1-r)^{t}
$$

Example \#1: You bought a car for $\$ 16,000$. You expect the car to lose value, or depreciate, at a rate of 12% per year. Write an exponential decay model to represent this situation.
a. Using the model, predict the value of the car after 7 years.

Example \#2: In Lancaster, WI the population of 100,000 people decreases by 2% each year. Write a model to represent this situation.
a. Using the model, predict how many people will live in Lancaster in 20 years.
\qquad
\qquad Date: \qquad

You practice:

1. A business earned $\$ 85,000$ in 2000 . Then its earnings decreased by 2% each year for 10 years.
a. Write a model to represent this situation.
b. Using the model, predict how much the business will have earned in 5 years.
2. From 1894 to 1903 , the number of miles of cable car track in the United States decreased by about 11% per year. There were 302 miles of track in 1894.
a. Write a model to represent this situation.
b. Using this model, predict how many miles of track there will be in 1900.

Notes:

-

o Model:
o Key words:
\qquad
o Model:
o Key words:
\qquad
\qquad Date: \qquad

Example \#5: At the start of a basketball tournament consisting of six rounds, there are 64 teams. After each round, one half of the remaining teams are eliminated.
a. Write an exponential decay model.
b. How many teams remain after 3 rounds?
c. How many teams remain after 5 rounds?
d. Graph the exponential decay of the model using a table:

\boldsymbol{t}	\boldsymbol{y}

