NOTES: Section 6.6 – Solve Radical Equations

Goals: #1 - I can solve radical equations and check for extraneous solutions.

#2 - I can solve an equation with two radicals.

Homework: Lesson 6.6 Worksheet

Warm Up: Graph the function. Then state the domain and range. Lastly, compare the function with its parent function.

1.)
$$y = -2\sqrt[3]{x-1}$$

range: _____

comparison:

domain: _____

range: _____

comparison:

Notes:

To solve a radical equation:

- 1. _____ on one side of the equation.
- 2. ______ each side of the equation to the same _____ to eliminate radical.
- 3. _____ the polynomial equation using _____ we've learned.
- 4. _____your soultion!

Name:

Hour: _____ Date: ____

Example #1: Solve the equation. Check your solution.

1.
$$\sqrt[3]{x-5} - 1 = -1$$

$$2. (3x + 4)^{2/3} = 16$$

3.
$$x - 2 = \sqrt{x + 10}$$

4.
$$\sqrt{x+6} + 2 = \sqrt{10-3x}$$

Name:	Hour:	Date:

You practice: Solve the equation. Check your solution.

1.
$$-2x^{4/3} - 21 = -53$$

2.
$$x + 2 = \sqrt{2x + 7}$$

3.
$$\sqrt{3x+4} - 1 = \sqrt{x+5}$$