\qquad
\qquad Date: \qquad

NOTES: Section 7.6 - Solve Exponential and Logarithmic Equations

Goals: \#1 - I can solve an exponential equation by rewriting both sides with a common base.
\#2 - I can solve an exponential equation by taking a logarithm of both sides.
\#3 - I can solve a logarithmic equation by canceling out logarithms.
\#4 - I can solve a logarithmic equation by using exponents.
Homework: Lesson 7.6 Worksheet

Warm Up:

1. Expand the expression.
a. $\log _{3} 15 x$
b. $\ln \frac{\sqrt[3]{x}}{y^{2}}$
2. Condense the expression.
a. $5 \log _{2} x-4 \log _{2} y$
b. $\ln 4+3 \ln 3-\ln 12$

Notes:

\qquad are equations in which the \qquad occurs in the \qquad .

Example:
\qquad
\qquad Date: \qquad

Example \#1: Solve the exponential equation.

1. $4^{x}=\left(\frac{1}{2}\right)^{x-3}$
2. $100^{7 x+1}=1000^{3 x-2}$

You practice: Solve the exponential equation.

1. $9^{2 x}=27^{x-1}$
2. $81^{3-x}=\left(\frac{1}{3}\right)^{5 x-6}$

Notes:

How would we solve the equation $4^{x}=11$?

We \qquad write each side with the \qquad base.

To solve these types of \qquad equations, we will use \qquad .

Example \#2: Solve the exponential equation.

1. $4^{x}=11$
2. $4 e^{-0.3 x}-7=13$
\qquad
\qquad Date: \qquad

You practice: Solve the exponential equation.

1. $2^{x}=5$
2. $10^{3 x}+4=9$

Notes:
are equations in which the \qquad occurs in the \qquad .

Example:

Example \#3: Solve the logarithmic equation.

1. $\log _{5}(4 x-7)=\log _{5}(x+4)$
2. $\ln (7 x-4)=\ln (2 x+11)$
\qquad
\qquad Date: \qquad

Notes:

How would we solve the equation $\log _{4}(5 x-1)=3$?

We \qquad write each side with the \qquad logarithmic base.

To solve these types of \qquad equations, we will use \qquad .

Example \#4: Solve the logarithmic equation.

1. $\log _{4}(5 x-1)=3$
2. $\log 5 x+\log (x-1)=2$

You practice: Solve the logarithmic equation.

1. $\log _{2}(x-6)=5$
2. $\log _{4}(x+12)+\log _{4} x=3$

Name: Hour: \qquad Date: \qquad

Example \#5: You deposit \$100 in an account that pays 6\% annual interest compounded daily. How long will it take for the balance to reach $\$ 1000$?

