NOTES: Section 7.6 – Solve Exponential and Logarithmic **Equations**

Goals: #1 - I can solve an exponential equation by rewriting both sides with a common base.

- #2 I can solve an exponential equation by taking a logarithm of both sides.
- #3 I can solve a logarithmic equation by canceling out logarithms.
- #4 I can solve a logarithmic equation by using exponents.

Homework: Lesson 7.6 Worksheet

Warm Up:

- 1. Expand the expression.
 - a. $\log_3 15x$

b. $\ln \frac{\sqrt[3]{x}}{v^2}$

2. Condense the expression. a. $5 \log_2 x - 4 \log_2 y$

b. $\ln 4 + 3 \ln 3 - \ln 12$

Notes:

_____ are equations in which the ______

occurs in the ______.

Example:

Name:	Hour:	Date:

Example #1: Solve the exponential equation.

1.
$$4^x = \left(\frac{1}{2}\right)^{x-3}$$
 2. $100^{7x+1} = 1000^{3x-2}$

You practice: Solve the exponential equation.

1.
$$9^{2x} = 27^{x-1}$$
 2. $81^{3-x} = \left(\frac{1}{3}\right)^{5x-6}$

Notes:

How would we solve the equation $4^x = 11$?

We ______ write each side with the ______ base.

To solve these types of ______ equations, we will use ______.

Example #2: Solve the exponential equation.

1. $4^x = 11$ 2. $4e^{-0.3x} - 7 = 13$

Name:	_ Hour:	Date:
You practice: Solve the exponential equation.		
1. $2^x = 5$		2. $10^{3x} + 4 = 9$
Notes:		
	are equations in	which the
occurs in the		
Example:		

Example #3: Solve the logarithmic equation.

1. $\log_5(4x - 7) = \log_5(x + 4)$

2. $\ln(7x - 4) = \ln(2x + 11)$

Name:	Hour:	Date:			
Notes:					
How would we solve the equation $\log_4(5x - 1) = 3$?					
We	_ write each side with the	logarithmic base.			
To solve these types of	equations, we will use				
Example #4: Solve the logarithmic equation.					

1. $\log_4(5x - 1) = 3$ 2. $\log 5x + \log(x - 1) = 2$

You practice: Solve the logarithmic equation.

1. $\log_2(x-6) = 5$ 2. $\log_4(x+12) + \log_4 x = 3$

Name:	Hour:	Date:

Example #5: You deposit \$100 in an account that pays 6% annual interest compounded daily. How long will it take for the balance to reach \$1000?