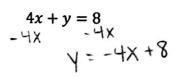
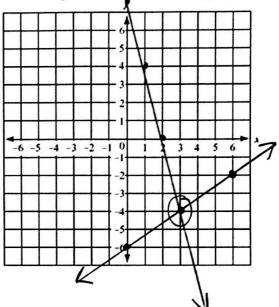
NOTES: Section 7.5 – Special Types of Linear Systems

Goals: #1 - I can identify how many solutions a linear system has.



Homework: Section 7.5 Worksheet

Exploration #1: Work with a partner. Graph both linear equations on the same graph.

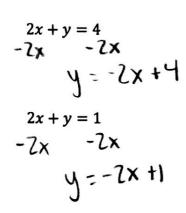

$$2x - 3y = 18$$

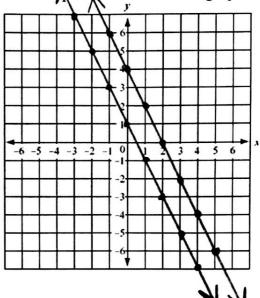
$$-7x -2x$$

$$-3y = -\frac{2x}{-3} + \frac{18}{-3}$$

$$-3 -3 -3$$

$$-3 -3 -3$$


Circle where these lines intersect. Can you check if your answer is correct? (3, -4) $(3) + (44) \stackrel{?}{=} 8$ $(3) - 3(-4) \stackrel{?}{=} 18$

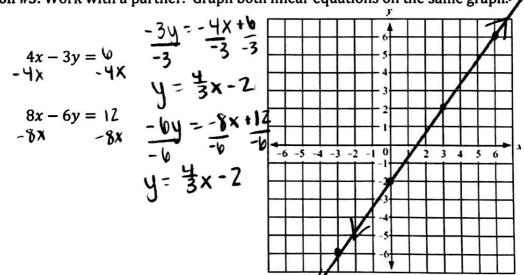

Notes:

A 1171W SYSTEM consists of two 1171W equations.

SOLUTION of a system of linear equations, is an orwith pair (x,y) where the graphs of the equations in a system $\underline{\qquad}$

Exploration #2: Work with a partner. Graph both linear expations on the same graph.

Circle where these lines intersect. Can you check if your answer is correct?


They don't a

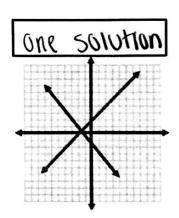
Notes:

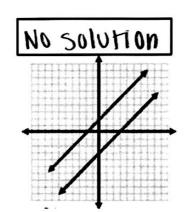
Lines that never intersect are called PAYAILL LINES

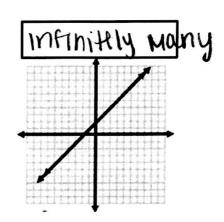
Since the graphs of the system do NOT intersect, we have NO SOLUTION.

Exploration #3: Work with a partner. Graph both linear equations on the same graph.

Circle where these lines intersect. Can you check if your answer is correct?

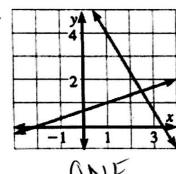

at every point!

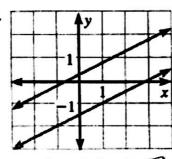

Notes:


Lines that intersect at every point are HN Same line!

Since the graphs of the system intersect at <u>EVERY</u> point, we have

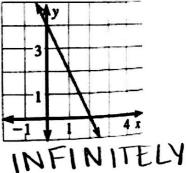
infinituly many solutions





Example #1: Tell how many solutions the system has.

1.



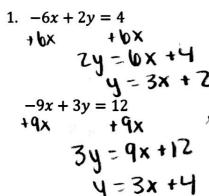
ONE

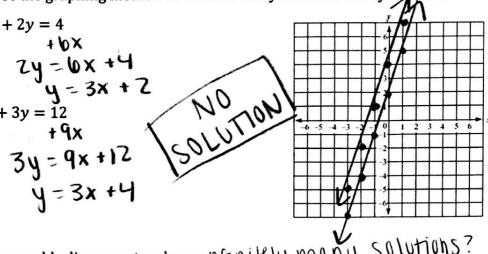
NO SOLUTION

3.

YNAM

Example #2: Use the graphing method to tell how many solutions the system has.


1. 2x + y = 8 \rightarrow y = -Zx + 8


2. $2x + y = 7 \rightarrow 1 = -7x + 7$ -y = -3x -Z

Name:	Hour:	Date:

Warm Up: Use the graphing method to tell how many solutions the system has.

2. When would a linear system have infinitely many solutions? when they are the same

Review:

We know that when we solve linear systems, we could have \underline{ONE} solution, \underline{NO} solution, or INFINITELY MANY solutions.

What does this look like algebraically?

ONE SOLUTION

INFINITELY MANY SOLUTIONS **NO SOLUTION** when variables drop 17. #8 ()=0

Example #3: Use substitution or elimination to solve the linear system.

a.
$$x - 2y = 4 \Rightarrow X = 4 + 2y$$

$$3x-6y=8$$
 $3(4+2y)-6y=8$
 $12+6y-6y=8$
 $12 \neq 8$

$$\vec{\beta}.(3x+y=-1)$$

$$\begin{array}{c} + & -9x - 3y = 3 \\ + & 3x + 3y = -3 \\ \hline 0 = 0 \end{array}$$

INFINITELY MANY SOLUTIONS

Name:	Hour:	Date:
00 000 000 000 00 00 000 00 00 00 00 00	882/30.De.A99-5 - 4	

Example #4: Use substitution or elimination to solve the linear system. Then describe the graph of the system.

1.
$$-x+y=7$$
 -7 $y=7+x$
 $2x-2y=-18$
 $2x-2(7+x)=-18$
 $2x-14-7x=-18$
 $-14 \neq -18$

These lines would be parallel lines.

$$-\frac{3}{2!}(-4x+y=-8)$$

$$-12x+3y \neq -24$$

$$1/2x-3y=24$$

$$0=0$$

These lines would be the same line.

INFINITELY MANY SOLUTIONS

NO SOLUTION

3.
$$-4x+y=-8$$

 $4(2x-2y=-14)$
 $-4x+12=-8$
 $-4x=-20$
 $-4x=-20$
 $-4x=-20$
 $-4x=-20$
 $-4x=-20$
 $-4x=-20$
 $-4x=-20$
 $-4x=-20$

These lines would intersect at (5,12)

ONE SOLUTION (5,12)