\qquad
\qquad
NOTES: Section 7.5-Special Types of Linear Systems

Goals: \#1 - I can identify how many solutions a linear system has.

Homework: Section 7.5 Worksheet

Exploration \#1: Work with a partner. Graph both linear equations on the same graph.

$$
\begin{aligned}
& 4 x+y=8 \\
& 2 x-3 y=18
\end{aligned}
$$

Circle where these lines intersect. Can you check if your answer is correct?

Notes:
A \qquad consists of two \qquad equations.

A \qquad of a system of linear equations, is an \qquad
(x, y) where the graphs of the equations in a system \qquad .
\qquad
\qquad Date: \qquad

Exploration \#2: Work with a partner. Graph both linear equations on the same graph.
$2 x+y=4$
$2 x+y=1$

Circle where these lines intersect. Can you check if your answer is correct?

Notes:
Lines that never intersect are called \qquad .

Since the graphs of the system do \qquad intersect, we have \qquad to the linear system.

Exploration \#3: Work with a partner. Graph both linear equations on the same graph.

$$
\begin{aligned}
& 4 x-3 y=6 \\
& 8 x-6 y=12
\end{aligned}
$$

Circle where these lines intersect. Can you check if your answer is correct?
\qquad Hour: \qquad Date: \qquad

Notes:
Lines that intersect at every point are \qquad -

Since the graphs of the system intersect at \qquad point, we have
\qquad to our linear system.

Example \#1: Tell how many solutions the system has.
1.

2.

3.

Example \#2: Use the graphing method to tell how many solutions the system has.

1. $2 x+y=8$

$$
-6 x-3 y=-8
$$

2. $2 x+y=7$
$3 x-y=-2$

\qquad
\qquad Date: \qquad

Warm Up: Use the graphing method to tell how many solutions the system has.

1. $-6 x+2 y=4$

$$
-9 x+3 y=12
$$

2. When would a linear system have infinitely many solutions?

Review:

We know that when we solve linear systems, we could have \qquad solution, \qquad solution, or \qquad solutions.

What does this look like algebraically?

Example \#3: Use substitution or elimination to solve the linear system.
a. $x-2 y=4$
b. $3 x+y=-1$
$3 x-6 y=8$

$$
-9 x-3 y=3
$$

\qquad Hour: \qquad Date: \qquad

Example \#4: Use substitution or elimination to solve the linear system. Then describe the graph of the system.

$$
\text { 1. } \begin{aligned}
-x+y & =7 \\
2 x-2 y & =-18
\end{aligned}
$$

2. $-4 x+y=-8$

$$
-12 x+3 y=-24
$$

3. $-4 x+y=-8$

$$
2 x-2 y=-14
$$

