NOTES: Section 7.5 – Special Types of Linear Systems

Goals: #1 - I can identify how many solutions a linear system has. Homework: Section 7.5 Worksheet

Exploration #1: Work with a partner. Graph both linear equations on the same graph.

Circle where these lines intersect. Can you check if your answer is correct?

A ______ of a system of linear equations, is an ______

(*x*, *y*) where the graphs of the equations in a system ______.

Name:	Hour:	Date:

Exploration #2: Work with a partner. Graph both linear equations on the same graph. y

			<u> </u>				- 6	<u> </u>							
2x + y = 4							- 5-								
2							- 4-								
		-	-	-			- 3-			-					
							- 2-								
							2								
	\vdash	<u> </u>	<u> </u>	<u> </u>			- 1	<u> </u>	<u> </u>	<u> </u>					
2x + y = 1	_													•	
2x + y = 1	-(6 -	5	4 -	3 -2	2 -	1 0		1 :	2 :	3 4	1 1	5 6	5	2
							-1-								
							2-								
							3-								
		-	<u> </u>	-			4-			-					
							5-								
		<u> </u>	<u> </u>	<u> </u>			-6-			<u> </u>					

Circle where these lines intersect. Can you check if your answer is correct?

Notes:

Lines that never intersect are called ______

Since the graphs of the system do ______ intersect, we have ______ to the linear system.

Exploration #3: Work with a partner. Graph both linear equations on the same graph. y

Circle where these lines intersect. Can you check if your answer is correct?

Name:	_ Hour:	_ Date:
Notes:		
Lines that intersect at every point are		
Since the graphs of the system intersect at	point, w	e have
		to our linear system.

Example #1: Tell how many solutions the system has.

Example #2: Use the graphing method to tell how many solutions the system has.

1. 2x + y = 8

$$-6x - 3y = -$$

2.
$$2x + y = 7$$

 $3x - y = -2$
y
-6 -5 -4 -3 -2 -1 0
-6 -5 -4 -3 -2 -1 0
-6 -5 -4 -3 -2 -1 0
-2 -2 -1 0
1 2 3 4 5

-5

-6-

6

Name:	Hour:	Date:

Warm Up: Use the graphing method to tell how many solutions the system has.

1 $6x + 2x = 4$)	v						
1. $-6x + 2y = 4$							ŧ.						
						- 0							
						- 5	1						
	\vdash					- 4	+	-			-	-	-
	\vdash					- 3	-	-		_	\rightarrow	+	-
						- 2	<u> </u>	<u> </u>			\rightarrow	+	-
0 1 0 1 0						- 1-							
-9x + 3y = 12						•							
<i>in 10, 1</i>	-												-
	-6	5 -5	5 -4	4 -3	3 -2			1 :	2 3	3 4	5	6	►.
	↓ -6	5 -:	5 -4	4 -3	3 -2	-1-		1 :	2 3	3 4	5	6	►.
	-6	5 -:	5 -4	4 -3	3 -2			1 :	2 3	3 4	5	6	►.
	-6	5 -:	5 -4	4 -3	3 -2	1-		1 :	2 3	3 4	5	6	►.
	-0	5 -:	5 -4	4 -3	3 -2	1- 2-			2 3	3 4	5	6	► .
	-6	5 -:	5 -4	4 -3	3 -2	1- 2- 3-			2 3	3 4	5	6	► .
	-6	5 -5	5 -4	4 -3	3 -2	1- 2- 3- 4-			2 3	3 4	5	6	► .

s

2. When would a linear system have *infinitely many solutions*?

Review:

We know that when we solve linear systems, we could have _____ solution, ____ solution, or _____ solutions.

What does this look like algebraically?

ONE SOLUTION NO SOLUTION INFINITELY MANY SOLUTIONS

Example #3: Use substitution or elimination to solve the linear system.

a. x - 2y = 4 3x - 6y = 8b. 3x + y = -1-9x - 3y = 3

	Name:	Hour:	Date:
--	-------	-------	-------

Example #4: Use substitution or elimination to solve the linear system. Then describe the graph of the system.

 $1. \quad -x + y = 7$ 2x - 2y = -18

2.
$$-4x + y = -8$$

 $-12x + 3y = -24$

 $3. \quad -4x + y = -8$ 2x - 2y = -14