	VEV		
Name:_	1-1	Hour:	Da

NOTES: Section 3.4 – Solve Systems of Linear Equations in Three Variables

Goals: #1 - I can solve a 3 variable system using elimination (with exactly one, zero, or infinitely many solutions).

#2 - I can solve a 3 variable system using substitution (with exactly one, zero, or infinitely many solutions).

Homework: Lesson 3.4 Worksheet

Warm Up: Graph the system of inequalities.

1.
$$2x - 4y \le 8$$

 $y < -\frac{1}{3}x + 4$
 $-4y \le -2x + 8$
 $y \ge \frac{1}{2}x - 2$

$$2. \ y > |x+2|$$
$$y \le 4$$

$$x \le -1$$

Notes:

A +hree - Variable System consists of three equations exceptions

A SOUTION of this system, is an Gralfed triple (x, y, z) where the planes in the system intersect at exactly one point.

Name:	Hour:	Date:
	110u1	Note that the second of the second of

Exactly one solution The planes intersect in a single point.

Infinitely many solutions The planes intersect in a line

No solution

The planes have no common point of intersection.

There are two algebraic methods for solving system of three equations:

Substitution and elin

Example #1: Solve the system using elimination.

$$0 4x + 2y + 3z = 1$$

$$2x - 3y + 5z = -14$$

$$(3) 6x - y + 4z = -1$$

Step 1: Rewrite each system in two variables (eliminate a chosen variable).

3
$$z(6x-y+4z=-1)$$

 $12x-7y+87=-2$
 $+4x+2y+37=1$
 $16x+17=-1$

Step 2: Solve for both variables.

$$+ \frac{10x + 11z = -1}{-10x - 7z = -11}$$

$$+ \frac{10x + 11z = -1}{4z = -12}$$

$$+ \frac{12z = -1}{2z = -3}$$

$$10x + 11(-3) = -1$$

 $10x - 33 = -1$
 $10x = 32$
 $[x = 2]$

Step 3: Substitute and solve for the remaining variable.

$$6(z) - y + 4(-3) = -1$$
 $1z - y - 1z = -1$
 $-y = -1$

Name:	Hour:	Date:

Review:

We know that when we solve linear systems, we could have 0 NE solution, NO solution, or infinitely mansolutions. This is the same for three-variable systems

What does this look like algebraically?

ONE SOLUTION		
X =	Ħ	
4=	Ħ	
7=	#	

NO SOLUTION	INFINITELY MANY SOLUTIONS	
all variab	nes drop out	
0 ≠ -5	0 = 0 1	

Example #2: Solve the system using eliminatio

$$0 \quad x+y+z=3 \quad 0 \times + y+z=3 \quad 6 + 2 \times + 4y+4z=7$$

$$3 \quad 4x+4y+4z=7 \quad 3x-y+2z=5 \quad 4x+4y+4z=7 \quad 4x+4$$

10x +177-27

Example #3: Solve the system using elimination

$$0x+y+z=4 0x+y+7=4 2x+y-z=4 3x+3y+7=12$$

$$3x+3y+z=12$$

$$7x+2y=8$$

$$4x+4y=16$$

$$2 \times + y - 7 = 4$$

$$3^{1}3x + 3y + / 2 = 12$$

$$4x + 4y = -16$$

$$4x + 4y = 16$$
 $-2(2x + 2y = 8)$
 $+ -4x - 4y = -16$
 $-4x + 4y = 16$
 $0 = 0$

Infinitely many Solutions

Name:	Hour:	Date:
-------	-------	-------

Example #4: Solve the system using substitution.

$$2x + y + z = 8$$
$$-x + 3y - 2z = 3$$
$$y = x + z$$

$$2x + (x + z) + z = 8$$

 $3x + 2z = 8$

$$3x + 2(3-2x) = 8$$

 $3x + 6 - 4x = 8$

$$6-x=8$$

$$-x=2$$

$$[x=-2]$$

$$-X + 3(x+7) - 27 = 3$$

$$2x + 7 = 3$$

$$(-7, 5, 7)$$

$$y = x + 7$$

 $y = -2 + 7$ $- y = 5$

Example #5: At a carry-out pizza restaurant, an order of 3 slices of pizza, 4 breadsticks, and

2 sodas costs \$13.35. A second order of 5 slices of pizza, 2 breadsticks, and 3 sodas costs

\$19.50. If 4 breadsticks and a soda cost \$0.30 more than a slice of pizza, what is the cost of

each item?
$$3x + 4y + 2z = 13.35$$

Pizza: $3z = 19.50$

bread stricts: 50.50
 $4y + z = x + 0.36$

50da: 51.75

$$4y + z = x + 0.30$$

$$12y + 3z - 0.90 + 4y + 2z = 13.35$$

$$z = 7.85 - 3.2(0.50)$$
 $z = 1$

$$\times = 4(0.50) + 1.25 - 0.30$$

$$72\dot{y} + 22.8 - 25.6\dot{y} - 21$$

-3.6y = -1.8 $1\dot{y} = 0.50$