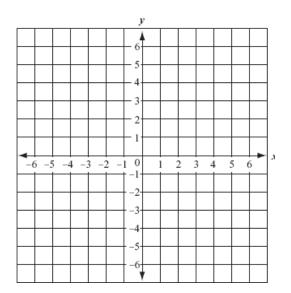
NOTES: Section 3.4 – Solve Systems of Linear Equations in **Three Variables**

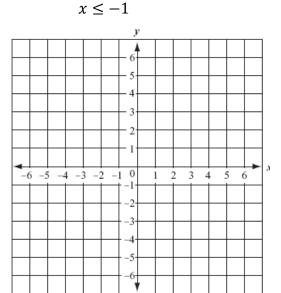

Goals: #1 - I can solve a 3 variable system using elimination (with exactly one, zero, or infinitely many solutions).

#2 - I can solve a 3 variable system using substitution (with exactly one, zero, or infinitely many solutions).

Homework: Lesson 3.4 Worksheet

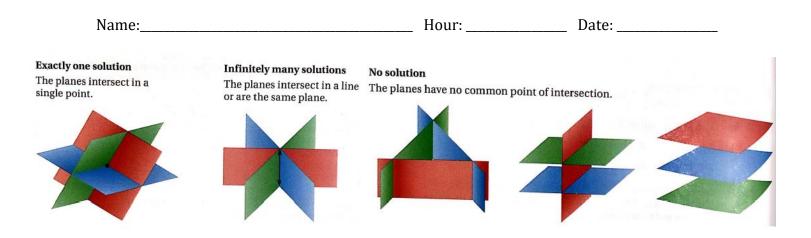
Warm Up: Graph the system of inequalities.

1. $2x - 4y \le 8$ $y < -\frac{1}{3}x + 4$



Notes:

A _____, consists of three equations.


A ______ of this system, is an ______ (*x*, *y*, *z*) where the planes in the system ______ at exactly one point.

2. y > |x + 2|

 $y \leq 4$

There are two algebraic methods for solving system of three equations:

and_

Example #1: Solve the system using elimination.

4x + 2y + 3z = 12x - 3y + 5z = -146x - y + 4z = -1

Step 1: Rewrite each system in *two* variables (eliminate a chosen variable).

Step 2: Solve for both variables.

Step 3: Substitute and solve for the remaining variable.

Name:	Hour:	Date:
Review:		
We know that when we solve linear systems, we could have solution, solution,		
or solutions. This is	the same for	·

What does this look like algebraically?

ONE SOLUTION NO SOLUTION INFINITELY MANY S	SOLUTIONS
--	-----------

Example #2: Solve the system using <u>elimination</u>.

x + y + z = 34x + 4y + 4z = 73x - y + 2z = 5

Example #3: Solve the system using <u>elimination</u>.

x + y + z = 4x + y - z = 43x + 3y + z = 12

Example #4: Solve the system using <u>substitution</u>.

2x + y + z = 8-x + 3y - 2z = 3y = x + z

Example #5: At a carry-out pizza restaurant, an order of 3 slices of pizza, 4 breadsticks, and 2 sodas costs \$13.35. A second order of 5 slices of pizza, 2 breadsticks, and 3 sodas costs \$19.50. If 4 breadsticks and a soda cost \$0.30 more than a slice of pizza, what is the cost of each item?