\qquad
\qquad Date: \qquad

NOTES: Section 7.5 - Apply Properties of Logarithms

Goals: \#1 - I can use properties of a logarithm to evaluate logarithms.
\#2 - I can use properties of a logarithm to expand and condense logarithms.
\#3 - I can use the change of base formula to evaluate logarithms.

Homework: Lesson 7.5 Worksheet

Warm Up:

1. Rewrite the equation in its alternate form.
a. $\log 10,000=4$
b. $e^{7}=x-3$
2. Evaluate the logarithm without a calculator.
a. $\log _{6} 216$
b. $\log _{16} \frac{1}{4}$
c. $\log _{1 / 4} 16$
3. Find the inverse of the function.
a. $y=\log (x-2)$
b. $y=(0.4)^{x}$
\qquad
\qquad

Exploration \#1: Work with a partner and answer the following questions.

1. Let $x=\log _{b} m$ and $y=\log _{b} n$
a. Rewrite these logarithmic equations in exponential form:

$$
x=\log _{b} m \rightarrow \quad y=\log _{b} n \rightarrow
$$

b. Now multiply $m n$:

$$
m n=
$$

c. Rewrite this exponential equation in logarithmic form:

$$
m n=b^{x+y} \rightarrow
$$

2. Let $x=\log _{b} m$ and $y=\log _{b} n$
a. Rewrite these logarithmic equations in exponential form:

$$
x=\log _{b} m \rightarrow \quad y=\log _{b} n \rightarrow
$$

b. Now divide $\frac{m}{n}$:

$$
\frac{m}{n}=
$$

c. Rewrite this exponential equation in logarithmic form:

$$
\frac{m}{n}=b^{x-y} \rightarrow
$$

Notes:

Product Property	
Quotient Property	
Power Property	

\qquad
\qquad Date: \qquad

Example \#1: Use $\log _{4} 3 \approx 0.792$ and $\log _{4} 7 \approx 1.404$ to evaluate the logarithm.

1. $\log _{4} \frac{3}{7}$
2. $\log _{4} 21$
3. $\log _{4} 49$

Example \#2: Use the properties of logarithms to expand or condense the following expressions.

1. Expand $\log _{6} \frac{5 x^{3}}{y}$
2. Condense $\log 2+3 \log 3-\log 9$

You practice: Use the properties of logarithms to expand or condense the following expressions.

1. Expand $\log _{3} \frac{7 x^{2}}{y}$
2. Condense $\ln 4+3 \ln 3-\ln 12$
\qquad
\qquad Date: \qquad

Notes:

Since our calculators can only evaluate logarithms with base \qquad , we can use the change-of-base formula to evaluate \qquad logarithm using a calculator.

Example \#3: Use the change-of-base formula to evaluate the logarithm.

1. $\log _{3} 8$
2. $\log _{6} 11$

Extra practice:

1. Expand $\log _{7} \frac{3 x^{2}}{5 y^{3}}$
2. Condense $5 \log _{4} 2+7 \log _{4} x-4 \log _{4} y$
