NOTES: Section 4.5 - Solve Quadratic Equations by Finding **Square Roots**

Goals: #1 - I can write square root expressions in simplest radical form by simplifying and rationalizing the denominator.

#2 - I can solve quadratics in the form $ax^2 + c$ by finding square roots.

Homework: Lesson 4.5 Worksheet

Warm Up:

1. Factor the following expressions:

1. Factor the following expressions:
a.
$$8r^2 + 6r - 5$$
 $8' - 5' - 40$
 $8r^2 - 4r + 10r - 5$
 $4r(2r-1) + 5(2r-1)$
 $(2r-1)(4r+5)$

b. $9m^2 + 30mn + 25n^2$ (3m) 2 (3m·5n)(5n)

2. Solve the following equation. a. $5x^2 + x - 4 = 0$ 5. -4 = -20 $5x^2 + 5x - 4x - 4 = 0$ 5

$$5x^{2}+5x-4x-4=0$$

 $5x(x+1)-4(x+1)=0$
 $(x+1)(5x-4)=0$

Review: Simplify the expression.

1.
$$\sqrt{80}$$
= $\sqrt{16} \cdot \sqrt{5}$
= $\boxed{4\sqrt{5}}$

Notes:

$$2. \sqrt{6} \cdot \sqrt{21}$$

$$= \sqrt{176}$$

$$= \sqrt{9} \cdot \sqrt{14}$$

$$= \sqrt{3} \sqrt{14}$$

$$5x = \frac{9}{3}$$
 $3. \sqrt{\frac{7}{16}}$
 $3. \sqrt{\frac{7}{16}}$
 $3. \sqrt{\frac{7}{16}}$
 $3. \sqrt{\frac{7}{16}}$
 $3. \sqrt{\frac{7}{16}}$
 $3. \sqrt{\frac{7}{16}}$

Recall some properties of square roots.

Property: vab = va · vb

36 49 **Perfect Squares:** 10 100 121

Example #1: Simplify the expression.

1.
$$3\sqrt{20} \cdot \sqrt{40}$$

= $3\sqrt{800}$

= $3.\sqrt{100} \cdot \sqrt{4} \cdot \sqrt{2}$

= $3.\sqrt{10} \cdot \sqrt{2}$

= $\sqrt{10} \cdot \sqrt{2}$

3. $\sqrt{\frac{11}{25}}$

= $\sqrt{11}$
 $\sqrt{25}$

= $\sqrt{11}$

$$2. \sqrt{180}$$

$$= \sqrt{36 \cdot \sqrt{5}}$$

$$= \sqrt{5}$$

4.
$$\sqrt{7} \cdot \sqrt{35}$$
= $\sqrt{245}$
= $\sqrt{49} \cdot \sqrt{5}$
= $\sqrt{175}$

Exploration #1: Work with a partner. Simplify the expression.

1.
$$\sqrt{\frac{17}{12}}$$

- $\sqrt{17}$. $\sqrt{12}$

- $\sqrt{12}$. $\sqrt{12}$

- $\sqrt{204}$ = $\sqrt{4 \cdot \sqrt{5}}$ = $\sqrt{2}$. $\sqrt{5}$. \sqrt

2.
$$\sqrt{\frac{6}{5}}$$

$$\frac{75}{\sqrt{5}} \cdot \sqrt{\frac{5}{5}}$$

$$= \sqrt{\frac{30}{5}}$$

Notes:

When we get a $\underline{VadI(aJ(V))}$ symbol in our $\underline{dln0Minator}$ we need to $\underline{VatIonMIZC}$ the $\underline{dln0Minator}$.

• $\underline{\sqrt{a}}$ = $\underline{mvltiply}$ \underline{py} : $\underline{\sqrt{a}}$

•
$$\sqrt{a} - 7$$
 Multiply by

Examples: $\frac{6}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{6\sqrt{5}}{(\sqrt{5})^2} = \frac{6\sqrt{5}}{5}$

radical in denominator

•
$$\frac{a + \sqrt{b}}{5 + \sqrt{2}} = \frac{4 + \sqrt{5} + \sqrt{2}}{5 + \sqrt{2}} = \frac{4(5 + \sqrt{2})}{25 + 5\sqrt{2} - 5\sqrt{2} - (\sqrt{2})^2} = \frac{20 + 4\sqrt{2}}{25 - 4} = \frac{20 + 4\sqrt{2}}{25 - 4} = \frac{20 + 4\sqrt{2}}{23} = \frac{20 + 4\sqrt{2}}{23} = \frac{20 + 4\sqrt{2}}{23}$$

Hour: _____ Date: _ Name:

Example #2: Simplify the expression.

1.
$$\sqrt{\frac{5}{2}}$$

= $\frac{75}{\sqrt{2}} \cdot \frac{72}{\sqrt{2}}$ radical in denominator?

= $\left[\frac{\sqrt{10}}{2}\right]$ value.

$$2. \frac{3}{7+\sqrt{2}} \cdot \frac{7-\sqrt{2}}{7-\sqrt{2}}$$

$$= \frac{21-3\sqrt{2}}{49-2}$$

$$= \frac{21-3\sqrt{2}}{47}$$

You practice: Simplify the expression.

1.
$$\sqrt{\frac{19}{21}}$$

$$= \frac{\sqrt{19}}{\sqrt{21}} \cdot \frac{\sqrt{21}}{\sqrt{21}}$$

$$= \sqrt{\frac{399}{21}}$$

$$3. \frac{2}{4+\sqrt{11}} \cdot \frac{4-\sqrt{11}}{4-\sqrt{11}}$$

$$= \frac{2(4-\sqrt{11})}{|8-1|}$$

$$= \frac{8-2\sqrt{11}}{5}$$

Example #3: Solve the equation.

1.
$$3x^2 + 5 = 41$$
 $-5 - 5$

$$\frac{3x}{3}^2 = \frac{3}{3}b$$

$$\frac{3}{3}$$

$$X^2 = 12$$

$$\sqrt{x^2} = \sqrt{12}$$

$$X = \sqrt{4} \cdot \sqrt{3} = \pm 2\sqrt{3}$$
You practice: Solve the equation.

1.
$$z^2 - 7 = 29$$

 $+7 + 7$
 $\sqrt{2^2 - 130}$
 $\sqrt{7} = \pm 6$

2.
$$2x^{2} - 15 = 65$$

 $+15$ $+15$
 $\frac{7}{2}x^{2} = 80$
 $\chi^{2} = 40$
 $\chi = \sqrt{4} \cdot \sqrt{10}$
 $\chi = \frac{12}{3}\sqrt{10}$
2. $\frac{3(x-2)^{2} = 40}{3}$
 $(x-2)^{2} = \frac{40}{3}$
 $\chi = \sqrt{40}$
 $\chi = \sqrt{40$

Name:	Hour:	Date:
		2410.

Example #4: When an object is dropped, its height h (in feet) above the ground after tseconds can be modeled by the function $h = -16t^2 + h_0$ where h_0 is the object's initial height (in feet).

For a science competition, students must design a container that prevents an egg from breaking when dropped from a height of 50 feet. How long does the container take to hit the ground? $h = -10t^2 + 50$

$$h = -10t^{2} + 50$$

$$0 = -10t^{2} + 50$$

$$-50 - 50$$

$$-50 = -10t^{2}$$

$$-10 = -10t^{2}$$

$$-10$$