Name:	Hour.	Date:
Name:	110u1	Datc

NOTES: Section 4.5 - Solve Quadratic Equations by Finding **Square Roots**

Goals: #1 - I can write square root expressions in simplest radical form by simplifying and rationalizing the denominator.

#2 - I can solve quadratics in the form $ax^2 + c$ by finding square roots.

Homework: Lesson 4.5 Worksheet

Warm Up:

1. Factor the following expressions:

a.
$$8r^2 + 6r - 5$$

b.
$$9m^2 + 30mn + 25n^2$$

2. Solve the following equation.

a.
$$5x^2 + x - 4 = 0$$

Review: Simplify the expression.

1.
$$\sqrt{80}$$

2.
$$\sqrt{6} \cdot \sqrt{21}$$

3.
$$\sqrt{\frac{7}{16}}$$

Notes:

Recall some properties of square roots.

Perfect Squares:						

Name:	Hour:	Date:
rume	110u1.	Date:

Example #1: Simplify the expression.

1.
$$3\sqrt{20} \cdot \sqrt{40}$$

2.
$$\sqrt{180}$$

3.
$$\sqrt{\frac{11}{25}}$$

$$4. \sqrt{7} \cdot \sqrt{35}$$

Exploration #1: Work with a partner. Simplify the expression.

1.
$$\sqrt{\frac{17}{12}}$$

2.
$$\sqrt{\frac{6}{5}}$$

Notes:

When we get a ______ symbol in our _____, we need to _____ the _____.

• _____: Examples:

•

Examples:

Example #2: Simplify the expression.

1.
$$\sqrt{\frac{5}{2}}$$

2.
$$\frac{3}{7+\sqrt{2}}$$

You practice: Simplify the expression.

1.
$$\sqrt{\frac{19}{21}}$$

$$2. \ \sqrt{10} \cdot \sqrt{15}$$

3.
$$\frac{2}{4+\sqrt{11}}$$

Example #3: Solve the equation.

1.
$$3x^2 + 5 = 41$$

2.
$$2x^2 - 15 = 65$$

You practice: Solve the equation.

1.
$$z^2 - 7 = 29$$

2.
$$3(x-2)^2 = 40$$

Name:	Hour:	Date:
-------	-------	-------

Example #4: When an object is dropped, its height h (in feet) above the ground after t seconds can be modeled by the function $h = -16t^2 + h_0$ where h_0 is the object's initial height (in feet).

For a science competition, students must design a container that prevents an egg from breaking when dropped from a height of 50 feet. How long does the container take to hit the ground?