$\qquad$
$\qquad$ Date: $\qquad$

## NOTES: Section 13.5 - Apply the Law of Sines

Goals: \#1-I can solve a triangle using the Law of Sines (need to know at least one angle and the opposite side).
\#2 - I can find the area of a triangle when given two sides and that included angle.

Homework: Lesson 13.5 Worksheet

## Warm Up:

1. Evaluate the expression. Give your answer in both radians and degrees. NO CALCULATOR.
a. $\sin ^{-1} \frac{\sqrt{2}}{2}$
b. $\cos ^{-1}-\frac{\sqrt{3}}{2}$
c. $\tan ^{-1} \frac{\sqrt{3}}{3}$
2. Solve the equation $\tan \theta=-2.5 ; 90^{\circ}<\theta<180^{\circ}$

## Notes:

How do we solve $\qquad$ with NO $\qquad$ angles?
$\bullet$ $\qquad$ :

$\qquad$ Hour: $\qquad$ Date: $\qquad$

This can be used to $\qquad$ triangles when $\qquad$ angles and the length of any $\qquad$ are known.
$\qquad$ _:

- $\qquad$ _:
$\qquad$ _:

Example \#1: Solve $\triangle A B C$ with $C=107^{\circ}, B=25^{\circ}$, and $b=15$

Example \#2: Solve $\triangle A B C$ with $A=115^{\circ}, a=20$, and $b=11$
$\qquad$ Date: $\qquad$

You practice: Solve $\triangle A B C$ with $A=127^{\circ}, a=63$, and $b=42$

Example \#3: Solve $\triangle A B C$ with $A=51^{\circ}, a=3.5$, and $b=5$

Example \#4: Solve $\triangle A B C$ with $A=40^{\circ}, a=13$, and $b=16$
$\qquad$
$\qquad$ Date: $\qquad$

You practice: Solve $\triangle A B C$ with $B=105^{\circ}, b=13$, and $a=6$

## Notes:

$\qquad$ :

There are $\qquad$ ways we can $\qquad$ the area of $\triangle A B C$ :

- $\quad$ Area $=$

- Area $=$
- Area $=$

Example \#5: A piece of land is bordered by three roads as shown. Find the area of the land.


