NOTES: Section 10.5 – Find Probabilities of Independent and Dependent Events

Goals: #1 - I can find the probability of independent and dependent events.

Homework: Lesson 10.5 Worksheet

Warm Up:

1. A card is randomly selected from a standard deck of 52 cards. What is the probability that it is a queen or an ace? \[\frac{1510101}{510101} \]

$$\frac{4}{52} + \frac{4}{52} = \frac{8}{52} = \begin{bmatrix} \frac{2}{13} \end{bmatrix}$$

2. Of 200 students at school, 58 play football, 40 play basketball, and 93 play both. What is the probability that a randomly selected student plays either football or basketball but NOT both?

basketball but NOT both?
$$58 + \frac{40}{200} - \frac{93}{200}$$

$$P(F OR B) = \frac{5}{200} + P(B) - P(F S B)$$

$$P(F OR B) = \frac{5}{200} = \boxed{1}$$

Notes:

Example: flip a coin = roll a dice

• If A and B are independent events, then the probability that both A and B occur is:

$$P(A \text{ and } B) = P(A) \cdot P(B)$$

Example #1:

Events A and B are independent. Find the probability.

1.
$$P(A) = 0.3$$

 $P(B) = 0.4$
 $P(A \text{ and } B) = ?$

$$P(A \text{ and } B) = 0.3 \cdot 0.4$$

 $P(A \text{ and } B) = [0.12]$

2.
$$P(A) = \frac{3}{4}$$

 $P(B) = ?$
 $P(A \text{ and } B) = \frac{3}{5}$

Name:	Hour:	Date:
	nour.	Date

Example #2:

For a fundraiser, a class sells 150 raffle tickets for a mall gift certificate and 200 raffle tickets for a booklet of movie passes. You buy 5 raffle tickets for each prize. What is the probability that you win both prizes?

$$P(M : B) = \frac{5}{150} \cdot \frac{5}{200} = \frac{25}{30000}$$

$$P(M) \cdot P(B) = \frac{1}{1200}$$

You practice:

During a high school track meet, each race consists of 9 competitors who are randomly assigned lanes from 1 to 9. What is the probability that a runner will draw lanes 1, 2, or 3 in the three races in which he competes?

$$\frac{3}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} = \frac{9}{779}$$
$$= \boxed{\frac{1}{243}}$$

Example #3:

A manufacturer has found that 2 out of every 500 coffee pots produced are defective. What is the probability that at least one coffee pot is defective in the first 300 coffee pots made?

$$P(\frac{\text{at least}}{\text{defective}}) = 1 - P(\text{none defective})$$

$$= 1 - \left(\frac{498}{500}\right)^{300}$$

$$\approx \left[0.6995\right]$$

Notes:

Example: draw a card, keep it, draw another card

If A and B are dependent events, then the probability that both A and B occur is:

$$P(A \text{ and } B) = P(A) \cdot P(B|A)$$

The probability that B will occur, given that A has occurred is called the CONDITION PYONDITIES: P(B)A

Name:	Hour:	Date:

Example #4:

Events A and B are dependent. Find the probability.

1.
$$P(A) = 0.6$$

 $P(B|A) = ?$
 $P(A \text{ and } B) = 0.45$
 $0.45 - 0.6 \cdot P(B|A)$
 $P(B|A) - 0.75$

2.
$$P(A) = \frac{7}{10}$$

 $P(B|A) = \frac{1}{2}$
 $P(A \text{ and } B) = ?$
 $P(A \text{ and } B) = \frac{7}{10} - \frac{1}{2}$
 $P(A \text{ and } B) = \frac{7}{20}$

Example #5:

You randomly select two marbles from a bag containing 15 yellow, 10 red, and 12 blue marbles. What is the probability that the first marble is yellow and the second marble is not yellow if:

1. You replace the first marble before selecting the second.

$$\frac{15}{37} \cdot \frac{22}{37} - \boxed{\frac{330}{1369}} \approx 0.241$$

 $\begin{array}{c}
\nabla \in \mathcal{P} \\
\text{2. You do } not \text{ replace the first marble.}
\end{array}$

$$\frac{15}{37} \cdot \frac{22}{36} = \frac{330}{1332}$$

$$= \frac{55}{222} \approx 0.247$$

You practice:

You randomly select two cards from a standard deck of 52 cards. What is the probability that the first card is a spade and the second card is a club if:

1. You replace the first card before selecting the second.

$$\frac{13}{52} \cdot \frac{13}{52} = \frac{109}{2704}$$
2. You do *not* replace the first card.
$$\frac{13}{52} \cdot \frac{13}{51} = \frac{109}{7052}$$

$$= \frac{13}{704} \approx 0.0037$$

Example #6:

Your teacher passes around a box with 10 red pencils, 8 pink pencils, and 13 green pencils. If you and the two people in your group are the first to randomly select a pencil, what is that probability that all three of you select pink pencils?

$$\frac{8}{31} \cdot \frac{7}{30} \cdot \frac{6}{29} = \frac{336}{26970} = \frac{56}{4495} \approx 0.0125$$

Fun example to end the unit:

What is the probability that at least 2 people in our class have the same birthday?

$$P(\text{at least 2 have}) = 1 - P(\frac{\text{No one has}}{\text{same bday}})$$

$$= 1 - \frac{365 \cdot 364 \cdot \frac{363}{3} \cdot \frac{362}{4} \cdot \dots \cdot \frac{336}{30}}{(365)^{30}}$$

$$= 1 - \frac{365 \cdot P_{30}}{(365)^{30}}$$

$$= 1 - 0.79368...$$

$$\approx 0.7003$$