NOTES: Section 9.4 – Graphing Quadratic Functions

Goals: #1 - I can graph a quadratic function.

Homework: Section 9.4 Worksheet

Exploration #1: Graph the following function using a table of values.

1.
$$y = x^2$$

a. Make some observations about your graph:

b. Do you know what this shape is called?

c. Do you know what type of function this is?

Name:	Hour:	Date:

Notes:

A _____ is a function that can be written in the

$$y = ax^2 + bx + c$$

The graph of a ______ function is a _____.

Characteristics of Quadratic Functions:

- Parabolas can open _____ or _____.
- The lowest or highest point on a parabola is called the

____.

The _____

divides the parabola into mirror

images and passes through the

The formula we use to find our vertex AND axis of symmetry is: ______.

Example #1: Identify the values of a, b, and c in the functions.

1.
$$y = x^2 + 2x - 3$$

2.
$$y = -5x^2 + 5$$

You practice: Identify the values of a, b, and c in the functions.

1.
$$y = -3x^2 - 9x - 12$$

2.
$$y = 4x^2 + x$$

Name:	

Hour: _____ Date: ____

Example #2: Identify the graph's axis of symmetry (AOS), vertex, and tell whether the graph opens up or down.

1.
$$y = 5x^2 + 10x + 7$$

$$2. \ y = -2x^2 + 4x - 1$$

AOS: _____

AOS: _____

vertex: _____

vertex: _____

opens: _____

opens: _____

3.
$$y = 5x^2 - 1$$

4.
$$y = -x^2 + 6x - 10$$

AOS: _____

AOS: _____

vertex: _____

vertex: _____

opens: _____

opens: _____

You practice: Identify the graph's axis of symmetry (AOS), vertex, and tell whether the graph opens up or down.

1.
$$y = x^2 - 2x - 3$$

2.
$$y = -x^2 + 1$$

AOS: _____

AOS: _____

vertex: _____

vertex: _____

opens:

opens:

Example #3: Graph the function by completing the table. Identify the graph's axis of symmetry (AOS), vertex, and tell whether the graph opens up or down.

1.
$$y = x^2 - 2x - 3$$

AOS: _____

vertex: _____

opens: _____

$$2. \ y = -2x^2 + 4x + 1$$

AOS: _____

vertex:

opens: _____

X			
У			

X			
У			

You practice: Graph the function by completing the table. Identify the graph's axis of symmetry (AOS), vertex, and tell whether the graph opens up or down.

1.
$$y = x^2 + 4x - 1$$

AOS: _____

vertex: _____

opens: _____

2.
$$y = -4x^2 + 4x + 7$$

AOS: _____

vertex: _____

opens: _____

X			
У			

X			
У			