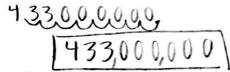
NOTES: Section 8.6 – Exponential Growth Functions

Goals: #1 - I can graph write and graph exponential growth functions.



Homework: Section 8.6 Worksheet

Warm Up:

1. Write the number 0.000459 in scientific notation.

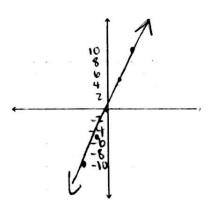
2. Write the number 4.33×10^8 in standard notation.

3. Perform the indiciated operation.

a.
$$(9 \times 10^{-6})(2 \times 10^{4})$$

 18×10^{-2}

b.
$$\frac{8 \times 10^{-3}}{4 \times 10^{-5}} \quad \frac{\$}{4} \times 10^{-3} \cdot (-5)$$


Exploration #1: Work with a partner. Complete the tables and graph the following functions.

1.
$$y = 5^x$$

x	у	75
- Z	古	75 10 15
-1	15	10 5
0	1	,
1	5	8 8
2	25	

2.
$$y = 5x$$

x	y
- 2	-10
-1	- 5
0	0
١	5
2	10

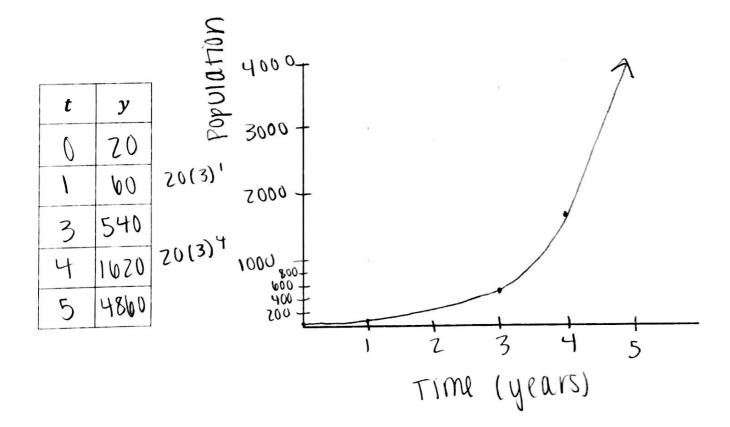
Name:	Hour:	Date:
Notes: One use of <u>exponential</u> function		•
A quantity is growing <u>exponentially</u> if in each unit of <u>time</u> . Tall of	it increse by the san	ne perunt
Exponential growth $y = C(3)$ initial 4 amount 9 Example #1: A newly hatched channel catfish to first six weeks of life, its weight increases by althought of the catfish during the first six weeks Let $y = wlight$ of the $t = t_1 me$ (days) $y = ((1+r)^t)$	ypically weights about	to the state of th
a. Using the model, predict the weight $y = 0.00 (1.1)^2$ $y \approx 0.72 \text{ grad}$	\overline{MS}	
Example #2: A TV station's local news program station hope to increase the number of viewers growth model to represent the number of view	s by 2% per month. (Write an exponential

Let
$$V = H$$
 of viewers
 $t = time (months)$ $(=50,000 \ V = 50,000 \ (1+0.02)^{t}$
 $V = ((1+r)^{t}$ $Y = 7\%$ $V = 50,000 \ (1.02)^{t}$

a. Using the model, predict how many viewers the news program will have in 15 months. -6.000 (1.007) 15

Name:	I	Hour:	Date:	
Notes:				0/1/00/
A common real-life example of	exponential grow	th is <u>COM</u>	pouna i	<u>nt(rest</u> .
The model for $\frac{COMPOU}{ACCOUNT}$ Example #3: You deposit \$500 What will the account balance $A = P(1 + Y)^{\frac{1}{4}}$	-A = P(1) Principal (amt paid) in an account that be after 6 years?	$+r)^{t-7}$ in ferest rate pays 8% inter $A = 5$ $A = 5$	time lyea	d yearly.
Example #4: A savings certificate the balance when the certificate $ \beta - \beta \left(\int r \gamma \right)^{\frac{1}{4}} $ You practice:	e matures in 5 yea	rs? 6 A	compounded year $= 1000 (1 + 1000)$	-0.065) ⁵ .065) ⁵
1 A rancher begins his here	d of Longhorn catt	le with 15. Th	ne herd grows by	y about 30%
per year. Write a model for $y = ((1+1)^t)^t$	the sine of his dun	ing the first co	overal vears	et y=# of cattle t=time lyears
C=15 Y=30°/0	<u>y = 13</u>	$\frac{115(1.3)}{15(1.3)}$	ŧ	•
a. Using the model, pred	lict how many catt	tle the rancher	r will have in 4 y	ears.
a. Using the model, product $y = 15(1)$. $y = 143$	cattle			
2. You deposit \$750 in an ac	ccount that pays 6	% interest rat $A - \neg 5$	re compounded	yearly. What
A = $(1+1)^{t}$	P=750	H= 75	0(1.06)	ò
	t=10 H=?	H= 131	343.14	

Name:	Hour:	Date:
	growth	factor!


Example #5: An initial population of 20 mice triples each year for 5 years.

$$y = C(1+r)^{t}$$

 $y = 70(3)^{t}$

b. What is the mice population after 3 years?

c. What is the mice population after 5 years?

d. Graph the exponential growth of the model using a table:

