\qquad
\qquad Date: \qquad

NOTES: Section 8.6 - Exponential Growth Functions

Goals: \#1 - I can graph write and graph exponential growth functions.

Homework: Section 8.6 Worksheet
Warm Up:

1. Write the number 0.000459 in scientific notation.
2. Write the number 4.33×10^{8} in standard notation.
3. Perform the indiciated operation.
a. $\left(9 \times 10^{-6}\right)\left(2 \times 10^{4}\right)$
b. $\frac{8 \times 10^{-3}}{4 \times 10^{-5}}$

Exploration \#1: Work with a partner. Complete the tables and graph the following functions.

1. $y=5^{x}$
2. $y=5 x$

\boldsymbol{x}	\boldsymbol{y}

\qquad
\qquad Date: \qquad

Notes:

One use of \qquad is to model \qquad .

A quantity is growing \qquad if it increse by the same \qquad in each unit of \qquad .

can be modeld by the equation:

$$
y=C(1+r)^{t}
$$

Example \#1: A newly hatched channel catfish typically weighs about 0.06 gram. During the first six weeks of life, its weight increases by about 10% each day. Write a model for the weight of the catfish during the first six weeks.
a. Using the model, predict the weight of the catfish after 26 days.

Example \#2: A TV station's local news program has 50,000 viewers. The managers of the station hope to increase the number of viewers by 2% per month. Write an exponential growth model to represent the number of viewers v in t months.
a. Using the model, predict how many viewers the news program will have in 15 months.
\qquad
\qquad Date: \qquad

Notes:

A common real-life example of exponential growth is \qquad -

The model for \qquad is generally written using:

$$
A=P(1+r)^{t}
$$

Example \#3: You deposit \$500 in an account that pays 8\% interest compounded yearly. What will the account balance be after 6 years?

Example \#4: A savings certificate of $\$ 1000$ pays 6.5% interest compounded yearly. What is the balance when the certificate matures in 5 years?

You practice:

1. A rancher begins his herd of Longhorn cattle with 15 . The herd grows by about 30% per year. Write a model for the size of his cattle during the first several years.
a. Using the model, predict how many cattle the rancher will have in 4 years.
2. You deposit $\$ 750$ in an account that pays 6% interest rate compounded yearly. What is the balance after 10 years?
\qquad
\qquad Date: \qquad

Example \#5: An initial population of 20 mice triples each year for 5 years.
a. Write an exponential growth model.
b. What is the mice population after 3 years?
c. What is the mice population after 5 years?
d. Graph the exponential growth of the model using a table:

