NOTES: Section 8.6 – Exponential Growth Functions

Goals: #1 - I can graph write and graph exponential growth functions.

Homework: Section 8.6 Worksheet

Warm Up:

- 1. Write the number 0.000459 in scientific notation.
- 2. Write the number 4.33×10^8 in standard notation.
- 3. Perform the indiciated operation.

a.
$$(9 \times 10^{-6})(2 \times 10^{4})$$

b.
$$\frac{8 \times 10^{-3}}{4 \times 10^{-5}}$$

Exploration #1: Work with a partner. Complete the tables and graph the following functions.

1.
$$y = 5^x$$

		1
\boldsymbol{x}	y	

2.
$$y = 5x$$

Name:	Hour:	Date:
Notes:		
One use of	is to model	·
A quantity is growingin each unit of	_ if it increse by the same	
	can be modeld by the ϵ	equation:
y = C	$(1+r)^t$	
Example #1: A newly hatched channel catfisl first six weeks of life, its weight increases by weight of the catfish during the first six weel	about 10% each day. Wi	
a. Using the model, predict the w	veight of the catfish after i	26 days.
Example #2: A TV station's local news prograstation hope to increase the number of views growth model to represent the number of views.	ers by 2% per month. Wi	

a. Using the model, predict how many viewers the news program will have in $15\,$ months.

Name:	Hour:	Date:
Notes:		
A common real-life example of expo	nential growth is	
The model for	is genera	lly written using:
\boldsymbol{A}	$= P(1+r)^t$	
Example #3: You deposit \$500 in an What will the account balance be aft		erest compounded yearly.
Example #4: A savings certificate of the balance when the certificate mat		compounded yearly. What is
You practice:		
1. A rancher begins his herd of L per year. Write a model for the s	•	•
a. Using the model, predict h	ow many cattle the ranche	or will have in 4 years
a. Osing the model, predict if	on many carrie the failth	or will have in 1 years.
2. You deposit \$750 in an account is the balance after 10 years?	nt that pays 6% interest ra	ate compounded yearly. What

Name:	Hour:	Date:

Example #5: An initial population of 20 mice triples each year for 5 years.

- a. Write an exponential growth model.
- b. What is the mice population after 3 years?
- c. What is the mice population after 5 years?
- d. Graph the exponential growth of the model using a table:

t	у

