Name:	Hour	Dato
ivallic.	110u1	Date

NOTES: Section 6.4 – Use Inverse Functions

Goals: #1 - I can find the inverse of a linear function.

#2 - I can verify that two functions are inverses of each other.

- #3 I can find the inverse of a power function.
- #4 I can graph the inverse of a function and determine if the inverse is a function.

Homework: Lesson 6.4 Worksheet

Warm Up:

1. Let $f(x) = 5x^3 - 2x$ and $g(x) = 3x^3$. Perform the indicated operation and state the domain.

a.
$$g(x) - f(x)$$

b.
$$\frac{f(x)}{g(x)}$$

answer: _____ answer: _____ domain: _____

2. Let $f(x) = 4x^{-1}$ and g(x) = 5x - 2. Perform the indicated operation and state the domain.

a.
$$f(g(x))$$

b.
$$f(f(x))$$

answer: _____ answer: _____ domain:

Exploration #1: Work with a partner and answer the following questions.

1. Each pair of function are *inverses* of each other. Look at the graphs of the following functions. What do you notice?

a.
$$f(x) = 4x + 3$$

$$g(x) = \frac{x-3}{4}$$

c.
$$f(x) = \sqrt{x - 3}$$

$$g(x) = x^2 + 3, x \ge 0$$

b.
$$f(x) = x^3 + 1$$

$$g(x) = \sqrt[3]{x-1}$$

d.
$$f(x) = \frac{4x+4}{x+5}$$

$$g(x) = \frac{4-5x}{x-4}$$

Notes:

An ______ is a _____ of the graph of

the original relation. It ______ the input and output values.

Meaning, the ______ and _____ are also interchanged.

Name:

Hour: _____ Date: ____

Example #1: Find an equation for the inverse of the relation.

1.
$$y = 3x - 5$$

2.
$$y = -\frac{1}{3}x^3$$

You practice: Find an equation for the inverse of the relation.

1.
$$y = x^2 + 1$$

2.
$$y = 4x + 2$$

Notes:

Functions f and g are ______ of each other provided:

$$f(g(x)) = x$$
 and $g(f(x)) = x$

Example #2: Verify that *f* and *g* are inverse functions.

1.
$$f(x) = 3x - 5$$
; $g(x) = \frac{1}{3}x + \frac{5}{3}$

2.
$$f(x) = 6x^2 + 1, x \ge 0; g(x) = \left(\frac{x-1}{6}\right)^{1/2}$$

You practice: Verify that f and g are inverse functions.

1.
$$f(x) = \frac{2}{5}x + \frac{1}{3}$$
, $g(x) = \frac{5}{2}x - \frac{5}{6}$

2.
$$f(x) = 6x^3$$
, $g(x) = \sqrt[3]{\frac{x}{6}}$

Notes:

Recall, to determine if a graph is a ______, we use the _____.

To determine whether the ______ of a function is a function, we apply the

Inverse is a function

Inverse is not a function

Example #3: Graph the function f. Use the horizontal line test to determine whether the inverse of f is a function. Then graph the inverse of f.

1.
$$f(x) = 3x + 1$$

$$2. \ f(x) = \frac{1}{4}x^2 - 1$$

You practice: Graph the function f. Use the horizontal line test to determine whether the inverse of f is a function. Then graph the inverse of f.

1.
$$f(x) = (x-4)(x+1)$$

2.
$$f(x) = \frac{1}{3}x^3$$

