NOTES: Section 5.4 - Factor and Solve Polynomial Equations

- Goals: #1 I can factor a polynomial completely including methods for common monomials, difference of two squares, sum or difference of two cubes, factoring by grouping, the quadratic form.
 - #2 I can recognize on my own which method of factoring is appropriate for a polynomial.

Homework: Lesson 5.4 Worksheet

#3 - I can find the real number solutions of a polynomial.

Exploration #1: Work with a partner and answer the following questions.

1. Factor the following completely:

Factor the following completely:
a.
$$2x^2 - 3x - 20$$
 $2(-76) = -40$
 $2x^2 - 8x + 5x - 20$
 $2x(x-4) + 5(x-4)$
 $(x-4)(2x+5)$

b.
$$x^2 + 8x + 16$$

$$(x + 4)(x + 4)$$

c. $9x^2 - 1$

$$(4x-1)(4x+1)$$

d.
$$8x^2 + 20x$$

Notes:

We can also factor Polynomials with degree greater than 2!

Some of these polynomials can be faltered completely using techniques we already learned!

Name:	Hour:	Date:

Example #1: Factor the polynomial completely.

1.
$$x^3 + 2x^2 - 15x$$

 $X (X^2 + ZX - 15)$
 $X (X + 5)(X - 3)$

$$\frac{2 \cdot 2y^{5} - 18y^{3}}{2y^{3}(y^{2} - 9)}$$

$$2y^{3}(y^{2} - 9)$$

$$2y^{3}(y^{3}(y^{2} - 3)(y + 3)$$

You practice: Factor the polynomial completely.

2.
$$3x^3 + 30x^2 + 75x$$

 $3x (X^2 + 10x + 25)$
 $3x (x + 5)(x + 5)$
 $3x (x + 5)^2$

$$\frac{59^{3}(9^{2}-10)}{59^{3}(9-4)(9+4)}$$

There are Spell Gactoring patterns we can look for!

Sum of Two Cubes

$$a^3 + b^3 = (a+b)(a^2-ab+b^2)$$

 $Ex \cdot a^3 + 8 = (a+z)(a^2-2a+4)$

Difference of Two Cubes

Oifference of Two Cubes
$$(a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})$$

$$Ex \cdot a^{3}-8=(a-2)(a^{2}+2a+4)$$

Example #2: Factor the polynomial completely.

$$(x)^{3} + (4)^{3}$$

$$(x)^{3} + (4)^{3}$$

$$(x)^{3} + (b)^{3} = (a+b)(a^{2}-ab+b^{2})$$

$$(x+4)(x^{2}-4x+1b)$$

$$\begin{array}{ll}
1. x^{3} + 64 & 2. \frac{16z^{5} - 250z^{2}}{(7z^{3})^{3} + (4)^{3}} \\
(x)^{3} + (4)^{3} & 2z^{2}(8z^{3} - 125) \\
\hline
(x + 4)(x^{2} - 4x + 16) & 2z^{2}(7z - 5)(4z^{2} + 10z + 25)
\end{array}$$

Name:	Hour:	Date:
. vanie.	110u1.	

You practice: Factor the polynomial completely.

$$(a^{3}-b^{3}-(a-b)(a^{2}+ab+b^{2})$$

$$(w)^{3}(3)^{3}$$

$$(w)^{3}(3)^{3}$$

$$(w)^{3}+3w+9$$

$$\begin{array}{c} 2.16b^{5}+686b^{2} \\ 7b^{2}(8b^{3}+343) \\ (2b)^{3} & (7)^{3} \\ (3+b^{3}-(0+b)(a^{2}-0b+b^{2}) \\ \hline 2b^{2}(7b+7)(4b^{2}-14b+49) \end{array}$$

Notes:

terms, we factor by grouping When a polynomial has ____

Example #3: Factor the polynomial completely.

$$\begin{array}{c|c}
1. & x^{3} - 3x^{2} & | -16x + 48 \\
 & \chi^{2}(\chi - 3) - | \psi(\chi - 3) \\
 & (\chi - 3)(\chi^{2} - | \psi) \\
\hline
 & (\chi - 3)(\chi - 4)(\chi + 4)
\end{array}$$

$$\begin{array}{c|c}
2. x^{3} + 7x^{2} - 9x - 63 \\
X^{2}(X+7) - 9(X+7) \\
(X+7)(X^{2}-9) \\
\hline
(X+7)(X-3)(X+3)
\end{array}$$

Notes:

Another pattern we can look for, is if a polynomial is in QUQUYQTIC FOYM

An expression in the form $\frac{QQ^2 + QQ}{QQ} + \frac{Q}{Q}$

Examples:

Name:	Hour:	Date:

Example #4: Factor the polynomial completely.

1.
$$16x^{4} - 81$$

 $(4x^{2})^{2} - (9)^{3}$
 $(4x^{2} - 9)(4x^{2} + 9)$
 $(2x)^{2}(3)^{3}$
 $(2x - 3)(2x + 3)(4x^{2} + 9)$

$$\frac{2 \cdot 2p^{8} + 10p^{5} + 12p^{2}}{2p^{2}(p^{6} + 5p^{3} + 6)}$$

$$\frac{2p^{2}(p^{3} + 3)(p^{2} + 2)}{2p^{2}(p^{3} + 3)(p^{2} + 2)}$$

You practice: Factor the polynomial completely.

1.
$$16g^{4} - 625$$
 $(4g^{2})^{2}(25)^{2}$
 $(4g^{2} - 25)(4g^{2} + 25)$
 $(2g)^{2}(5)^{2}$
 $(7g - 5)(7g + 5)(4g^{2} + 75)$

$$\frac{2.4t^{6}-20t^{4}+24t^{2}}{4t^{2}(t^{4}-5t^{2}+6)}$$

$$\frac{4t^{2}(t^{2}-3)(t^{2}-2)}{4t^{2}(t^{2}-3)(t^{2}-2)}$$

Notes:

We can still use <u>factoring</u> to solve certain <u>polynomial equations</u>

• Zero Product Property:

$$\nabla \cdot \beta = 0$$
, $\nabla = 0$ $\beta = 0$

Example #5: Solve the following equations.

$$3x^{5} + 15x = 18x^{3}$$

$$3x^{5} - 18x^{3} + 15x = 0$$

$$3x(x^{4} - 6x^{2} + 5) = 0$$

$$3x(x^{2} - 5)(x^{2} - 1) = 0$$

$$3x(x^{2} - 5)(x + 1)(x - 1) = 0$$

$$3x(x^{2} - 5)(x + 1)(x - 1) = 0$$

$$x^{2} - 5 = 0$$

Name:	1	Hour:	Date:
		0100-1100-010-010-0100-01	

You practice: Solve the following equations.

1.
$$4x^{5} - 40x^{3} + 36x = 0$$

 $4x(x^{4} - 10x^{2} + 9) = 0$
 $4x(x^{2} - 9)(x^{2} - 1) = 0$
 $4x(x - 3)(x + 3)(x - 1)(x + 1) = 0$
 $4x = 0$ $x - 3 = 0$ $x + 3 = 0$ $x - 1 = 0$ $x + 1 = 0$
 $x = 0$ $x = 3$ $x = -3$ $x = -1$

2.
$$2x^{5} + 24x = 14x^{3}$$

 $2x^{5} - 14x^{3} + 24x = 0$
 $2x(x^{4} - 7x^{2} + 12) = 0$
 $2x(x^{2} - 3)(x^{2} - 4) = 0$
 $2x(x^{2} - 3)(x + 2)(x - 2) = 0$
 $2x = 0$ $x^{2} - 3 = 0$ $x + 2 = 0$ $x - 2 = 0$
 $x = 0$ $x^{2} - 3 = 0$ $x + 2 = 0$ $x - 2 = 0$
 $x = 0$ $x^{2} - 3 = 0$ $x + 2 = 0$ $x - 2 = 0$
 $x = 0$ $x = 0$ $x - 2 = 0$
 $x = 0$ $x = 0$ $x - 2 = 0$
 $x = 0$ $x - 2 = 0$

Example #6: A catering company is designing a box for packing Christmas candies. The company would like the volume of the box to be 54 cubic inches and the bottom of the box to be a square.

a.) Suppose that the bottom of the box has a width that is 3 inches smaller than the height x of the box. Write a simplified polynomial equation, in standard form, for the volume of the

$$V = x (x - 3)(x - 3)$$

$$= x (x^{3} - 3x - 3x + 9)$$

$$= x (x^{3} - 6x + 9)$$

$$= x^{3} - 6x^{2} + 9x$$

b.) Solve the equation from part (a).

$$54 = x^{3} - 6x^{2} + 9x$$

$$0 = x^{3} - 6x^{2} + 9x - 54$$

$$0 = x^{2}(x - 6) + 9(x - 6)$$

$$0 = (x^{2} + 9)(x - 6)$$

X²+9=0 X³=-9 X>€3i

a.)
$$\sqrt{\frac{1}{2}} \times \sqrt{\frac{3-6}{2}} + \frac{9}{2} \times \sqrt{\frac{3-6}{2}}$$

$$\sqrt{\frac{1}{2}} \times \sqrt{\frac{3-6}{2}}$$

c.) What are the dimensions of the box?

b.) X=6

length: 3 inwidth: 3 inheight: 10 in