NOTES: Section 5.4 – Factor and Solve Polynomial Equations

Goals: #1 - I can factor a polynomial completely including methods for common monomials, difference of two squares, sum or difference of two cubes, factoring by grouping, the quadratic form.

- #2 I can recognize on my own which method of factoring is appropriate for a polynomial.
- #3 I can find the real number solutions of a polynomial. Homework: Lesson 5.4 Worksheet

Exploration #1: Work with a partner and answer the following questions.

1. Factor the following completely: a. $2x^2 - 3x - 20$ b. $x^2 + 8x + 16$

d. $8x^2 + 20x$

Notes:	
1.0000	

We can also factor	 with degree gre	eater than 2!
	- 0 0	

Some of these ______ can be _____

using techniques we already learned!

c. $9x^2 - 1$

Name:	Hour:	Date:
Example #1: Factor the polynomial completely.		

1.
$$x^3 + 2x^2 - 15x$$
 2.

2.
$$2y^5 - 18y^3$$

You practice: Factor the polynomial completely.

2.
$$3x^3 + 30x^2 + 75x$$
 2. $5g^5 - 80g^3$

Notes: There are ______ factoring patterns we can look for!

Sum of Two Cubes

Difference of Two Cubes

Example #2: Factor the polynomial completely.

1. $x^3 + 64$ 2. $16z^5 - 250z^2$

Name:	Hour:	Date:
You practice: Factor the polynomial completely.		
1. $w^3 - 27$		2. $16b^5 + 686b^2$
Notes:		
When a polynomial has terms	s, we	
Example #3: Factor the polynomial completely.		
1. $x^3 - 3x^2 - 16x + 48$		2. $x^3 + 7x^2 - 9x - 63$
Notes:		
Another pattern we can look for, is if a polynom	ial is in	·
An expression in the form		is in quadratic form.
Examples:		-

Name:	Hour:	Date:
Example #4: Factor the polynomial completely.		
1. $16x^4 - 81$		2. $2p^8 + 10p^5 + 12p^2$
You practice: Factor the polynomial completely.		
1. $16g^4 - 625$		2. $4t^6 - 20t^4 + 24t^2$
Notes:		
We can still use to solve	ecertain	
We set the polynomial equation equal to	and use the	
Zero Product Property:		
Example #E. Solve the following equations		
Example #5: Solve the following equations.		
1. $3x^5 + 15x = 18x^3$		2. $-27x^3 + 15x^2 = -6x^4$

Name:	Hour:	Date:

You practice: Solve the following equations.

1.
$$4x^5 - 40x^3 + 36x = 0$$

2. $2x^5 + 24x = 14x^3$

Example #6: A catering company is designing a box for packing Christmas candies. The company would like the volume of the box to be 54 cubic inches and the bottom of the box to be a square.a.) Suppose that the bottom of the box has a width that is 3 inches smaller than the height *x* of the box. Write a simplified polynomial equation, in standard form, for the volume of the box.

b.) Solve the equation from part (a).	
	b.)
c.) What are the dimensions of the box?	
	c.)
	longth.
	width:
	height:

a.) _____