NOTES: Section 2.7 – Use Absolute Value Functions and **Transformations**

Goals: #1 – I can solve an absolute value equation in order to find the *x*-intercepts of an absolute value graph.

- #2 I can graph absolute value equations and describe if the function is a stretch, shrink, reflection, and/or translation of the parent function.
- #3 I can graph the transformation of a function by identifying a stretch, shrink, reflection, and/or translation of the parent function, f(x).

Homework: Lesson 2.7 Worksheet

Exploration #1: Fill in the table and graph the function.

1. f(x) = |x|

x	f(x)
-4	
-2	
0	
2	
4	

2. Describe what happens to the *vertex* when Ms. Hentrich does the following: a. f(x) = |x| + 5b. f(x) = |x + 5|

c.
$$f(x) = |x + 5| + 5$$
 d. $f(x) = -|x|$

e.
$$f(x) = 5|x|$$
 f. $f(x) = \frac{1}{5}|x|$

Name:	Hour:	Date:

Transformation	f(x) Notation	Examples
	Shift Up	
Vertical Translation <i>(shift up and down)</i>	Shift Down	
	Shift Left	
Horizontal Translation (shift left and right)	Shift Right	
Reflection <i>(in the x -axis)</i>		
	Narrower	
Vertical Stretch/Shrink (narrower and wider)	Wider	

Notes:

A ______ changes a graph's size, shape, position, or orientation.

A ______ is a type of transformation that shifts a graph

horizontally and/or vertically, but does _____ change its size, shape, or orientation.

Example #1: Graph y = |x + 4| - 2. Compare the graph with the graph of y = |x|.

Name:	Hour:	Date:
		20.000

Example #2: Graph (a) $y = \frac{1}{2}|x|$ and (b) y = -3|x|. Compare each graph with the graph of y = |x|.

The vertex of y = a|x - h| + k is _____.

Name:	Hour:	Date:

Example #3: Write an equation for the graph shown.

Example #4: Graph y = -2|x - 1| + 3. Compare the graph with the graph of y = |x|.

Example #5: Refer to the following function: $y = -\frac{7}{2}|x-2| + 4$. Compare the graph of this function to the graph of the function y = |x|. Make a bulleted list. Use terminology that we learned today.