\qquad
\qquad
\qquad

NOTES: Section 2.7 - Use Absolute Value Functions and Transformations

Goals: \#1 - I can solve an absolute value equation in order to find the x-intercepts of an absolute value graph.
\#2 - I can graph absolute value equations and describe if the function is a stretch, shrink, reflection, and/or translation of the parent function.
\#3 - I can graph the transformation of a function by identifying a stretch, shrink, reflection, and/or translation of the parent function, $f(x)$.

Homework: Lesson 2.7 Worksheet

Exploration \#1: Fill in the table and graph the function.

1. $f(x)=|x|$

x	$f(x)$
-4	
-2	
0	
2	
4	

2. Describe what happens to the vertex when Ms. Hentrich does the following:
a. $f(x)=|x|+5$
b. $f(x)=|x+5|$
c. $f(x)=|x+5|+5$
d. $f(x)=-|x|$
e. $f(x)=5|x|$
f. $f(x)=\frac{1}{5}|x|$
\qquad
\qquad Date: \qquad

Transformation	$\boldsymbol{f}(\boldsymbol{x})$ Notation	Examples
Vertical Translation (shift up and down)	Shift Up	
Horizontal Translation (shift left and right)	Shift Left	
Reflection (in the x-axis)	Narrower	
Vertical Stretch/Shrink (narrower and wider)	Wider	

Notes:

A \qquad changes a graph's size, shape, position, or orientation.

A \qquad is a type of transformation that shifts a graph horizontally and/or vertically, but does \qquad change its size, shape, or orientation.

Example \#1: Graph $y=|x+4|-2$. Compare the graph with the graph of $y=|x|$.

Vertex:

Graph opens:

Comparisons:
\qquad
\qquad Date: \qquad

Example \#2: Graph (a) $y=\frac{1}{2}|x|$ and (b) $y=-3|x|$. Compare each graph with the graph of $y=|x|$.
(a)

(b)

Notes:

The graph of \qquad can involve a vertical stretch or shrink, a reflection, and a translation of the graph of \qquad .

The vertex of $y=a|x-h|+k$ is \qquad .
\qquad
\qquad Date: \qquad

Example \#3: Write an equation for the graph shown.

Example \#4: Graph $y=-2|x-1|+3$. Compare the graph with the graph of $y=|x|$.

Vertex:

x				
y				

Comparisons:

Example \#5: Refer to the following function: $y=-\frac{7}{2}|x-2|+4$. Compare the graph of this function to the graph of the function $y=|x|$. Make a bulleted list. Use terminology that we learned today.

