NOTES: Section 13.4 – Evaluate Trigonometric Functions of Any Angle

Goals: #1 - I can evaluate inverse trig functions.

#2 - I can solve for an angle when given its trig ratio and what quadrant it lies in.

#3 - I can find the measure of an angle when given two sides of a right triangle.

Homework: Lesson 13.4 Worksheet

Exploration #1: Work with a partner and answer the following questions.

1. Could you find an angle, θ whose $\sin \theta = \frac{1}{2}$?

a. Is there another possible angle?

150°, 390°, 510°, ...

2. Could you find an angle, θ whose $\cos \theta = -\frac{\sqrt{2}}{2}$?

135°

a. Is there another possible angle?

225°, 495°, 585°, ...

3. Could you find an angle, θ whose $\tan \theta = 0$?

00

a. Is there another possible angle?

360°, 180°, 540°, ...

Notes:

Finding an ______ that corresponds to a given value, is called evaluating ______ trigonometric functions.

To obtain a unique angle θ , we must restrict the ______ **dominimes** of the trig function.

· Inverse Sine

If $-1 \le a \le 1$, then the **inverse sine** of *a* is an angle θ , written $\theta = \sin^{-1} a$, where:

(1)
$$\sin \theta = a$$

· Inverse Cosine

If $-1 \le a \le 1$, then the **inverse cosine** of a is an angle θ , written $\theta = \cos^{-1} a$, where:

(1)
$$\cos \theta = a$$

. Inverse Tangent

If a is any real number, then the **inverse** tangent of a is an angle θ , written $\theta = \tan^{-1} a$, where:

(1)
$$\tan \theta = a$$

Name:	

Hour: Date: ____

1.
$$\cos^{-1} \frac{\sqrt{3}}{2}$$

$$\theta = 30^{\circ}, \frac{\pi}{6}$$

2.
$$\sin^{-1} 2$$

Example #1: Evaluate the expression in both radians and degrees.

1.
$$\cos^{-1}\frac{\sqrt{3}}{2}$$

2. $\sin^{-1}2$

1. $\cos^{-1}\frac{\sqrt{3}}{2}$

2. $\sin^{-1}2$

3. $\tan^{-1}(-\sqrt{3})$

Example #2: Solve the equation $\sin \theta = -\frac{5}{8}$ where $180^{\circ} < \theta < 270^{\circ}$.

You practice:

1. Evaluate the expression in both radions and degrees. $0 \angle 6 \angle (80^{\circ} a. \cos^{-1} \frac{1}{2})$

$$-90^{\circ} \angle 0 \angle 90^{\circ} \qquad \frac{315^{\circ}}{1} \frac{\sqrt{z}}{\sqrt{z}}$$
b.
$$\tan^{-1}(-1) \qquad \times \qquad \frac{\sqrt{z}}{\sqrt{z}}$$

$$0 = -45^{\circ}, -\frac{\pi}{2}$$

2. Solve the equation $\tan \theta = 4.7$ where $180^{\circ} < \theta < 270^{\circ}$.

$$\theta = 4 \text{ m}^{-1}(4.7)$$

 $\theta \approx 77.9$
 $180^{\circ} + 77.9$
 $180 \approx 258^{\circ}$

Example #3: Find the measure of the angle θ .

$$0 = \sin^{-1}\left(\frac{5}{13}\right)$$

$$0 \approx 22.6^{\circ}$$

$$+ an o = \frac{5}{8}$$

$$0 = +an - (8)$$

$$\left[0 \approx 32^{\circ} \right]$$

You practice: Find the measure of the angle θ .

$$tan0 = \frac{17}{6}$$
 $0 = tan^{-1}(\frac{17}{6})$
 $0 = 70.6^{\circ}$

Example #4: A monster truck drives off a ramp in order to jump onto a row of cars. The ramp has a height of 8 feet and a horizontal length of 20 feet. What is the angle θ of the ramp?

$$tan 0 = \frac{8}{12}$$
 $6 = tan^{-1}(\frac{8}{12})$
 $0 \approx 33.7^{\circ}$