\qquad
\qquad Date: \qquad

NOTES: Section 13.4 - Evaluate Inverse Trigonometric Functions

Goals: \#1-I can evaluate inverse trig functions.
\#2 - I can solve for an angle when given its trig ratio and what quadrant it lies in.
\#3 - I can find the measure of an angle when given two sides of a right triangle.

Homework: Lesson 13.4 Worksheet

Exploration \#1: Work with a partner and answer the following questions.

1. Could you find an angle, θ whose $\sin \theta=\frac{1}{2}$?
a. Is there another possible angle?
2. Could you find an angle, θ whose $\cos \theta=-\frac{\sqrt{2}}{2}$?
a. Is there another possible angle?
3. Could you find an angle, θ whose $\tan \theta=0$?
a. Is there another possible angle?
\qquad
\qquad Date: \qquad

Notes:
Finding an \qquad that corresponds to a given value, is called evaluating
\qquad trigonometric functions.

To obtain a unique angle θ, we must restrict the \qquad of the trig function.
\qquad :

If $-1 \leq a \leq 1$, then the inverse sine of a is an angle θ, written $\theta=\sin ^{-1} a$, where:
(1) $\sin \theta=a$

\qquad :

If $-1 \leq a \leq 1$, then the inverse cosine of a is an angle θ, written $\theta=\cos ^{-1} a$, where:
(1) $\cos \theta=a$
(2)

- \qquad :

If a is any real number, then the inverse tangent of a is an angle θ, written $\theta=\tan ^{-1} a$, where:
(1) $\tan \theta=a$
(2)

\qquad
\qquad Date: \qquad

Example \#1: Evaluate the expression in both radians and degrees.

1. $\cos ^{-1} \frac{\sqrt{3}}{2}$
2. $\sin ^{-1} 2$
3. $\tan ^{-1}(-\sqrt{3})$

Example \#2: Solve the equation $\sin \theta=-\frac{5}{8}$ where $180^{\circ}<\theta<270^{\circ}$.

You practice:

1. Evaluate the expression in both radions and degrees.
a. $\cos ^{-1} \frac{1}{2}$
b. $\tan ^{-1}(-1)$
2. Solve the equation $\tan \theta=4.7$ where $180^{\circ}<\theta<270^{\circ}$.
\qquad
\qquad Date: \qquad

Example \#3: Find the measure of the angle θ.
1.

2.

You practice: Find the measure of the angle θ.
1.

Example \#4: A monster truck drives off a ramp in order to jump onto a row of cars. The ramp has a height of 8 feet and a horizontal length of 20 feet. What is the angle θ of the ramp?

