Name:	Hour:	Date:	
11411161	110 u11	Bate:	

NOTES: Section 10.4 – Solving Quadratic Equations in Factored Form

Homework: Section 10.4 Worksheet

Notes:		
When two or more	numbers are	, each of the number is a
	of the	
A	is in	form if it is written as the
	of two or more	
Examples:		
To solve these equa	ntions, set the quadratic equati	on equal to and use the:
• Zero Produc	t Property:	

Example #1: Solve the equation.

1.
$$(x-2)(x+3) = 0$$

2.
$$x(x-2) = 0$$

Example #2: Solve the equation.

1.
$$(x+5)^2 = 0$$

2.
$$(4x-1)^2=0$$

You practice: Solve the equation.

1.
$$(2x-1)(x+7)=0$$

2.
$$(a-4)^2=0$$

3.
$$(x+1)^2 = 0$$

4.
$$(x + 4)(x + 1) = 0$$

Example #2: Solve the equation.

1.
$$(2x + 1)(3x - 2)(x - 1) = 0$$

2.
$$(y-3)^2(2y+3) = 0$$

You practice: Solve the equation.

1.
$$(x-4)(x+6)(4x+3) = 0$$

2.
$$(2x + 1)(x - 8)^2 = 0$$

Exploration #2: Graph y = (x + 4)(x + 2) using a table of values.

-	•
$\boldsymbol{\chi}$	у

- 1. What are the *x*intercepts?
- 2. What is the AOS?
- 3. What do you notice about your graph?

Notes:

We can use the following properties to graph *any* quadratic function in _____ form.

$$y = a(x - p)(x - q)$$

- The graph opens ______ if _____ and opens _____ if _____.
- The ______ are _____.
- The ______ is halfway between _____ and _____.

It has the equation_____.

__ Hour: ______ Date: _____

Example #3: Graph y = (x + 3)(x - 1).

x-intercepts: _____

AOS: _____

Vertex: _____

Opens: _____

х			
у			

You practice: Graph y = (x - 1)(x - 6).

x-intercepts: _____

AOS: _____

Vertex: _____

Opens: _____

х			
у			

