NOTES: Section 7.4 – Evaluate Logarithms and Graph Logarithmic Functions

Goals: #1 - I can interchange between exponential and logarithmic form.

#2 - I can evaluate a logarithm without using a calculator.

#3 - I can evaluate common and natural logarithms with a calculator.

#4 - I can simplify a logarithm.

#5 - I can find the inverse of an exponential function or logarithm.

#6 - I can graph a logarithm.

Homework: Lesson 7.4 Worksheet

Exploration #1: Work with a partner and answer the following questions.

1.	Find the value of <i>x</i> in e		
	a. $2^x = 8$	b. $3^x = 9$	c. $4^x = 2$

d.
$$5^x = 1$$
 e. $5^x = \frac{1}{5}$ f. $8^x = 2$

Notes:

We know that $2^2 = 4$ and $2^3 = 8$. However, for what ______ of x does $2^x = 6$?

Mathematicians define this *x*-value using a ______ and write ______.

The ______ of *y* with base *b* is defined as:

if and only if

Massa	
Namo	
Inallic	

_____ Hour: _____ Date: _____

Example #1: Rewrite the equations.

Logarithmic Form	Exponential Form
1. $\log_2 32 = 5$	
2. $\log_7 1 = 0$	
3.	$13^1 = 13$
4.	$\frac{1^{-1}}{2} = 2$
5. $\log_3 x = 5$	
$6. y = \log_6 x$	
7.	$8^x = y$
8.	$4^3 = 64$
9.	$25 = 5^{4x}$

Notes:

Logarithms evaluate	To help you find the value of a log _b y ask	
yourself "		?"

Examp	le #2:	Evaluate	the	logarithm.
				0

2. log ₄ 0.25

3.	$\log_{1/4} 256$	
----	------------------	--

4. log₄₉ 7

You practice: Evaluate the logarithm.

1. $\log_{1/5} 25$	2. log ₁₀ 0.001
--------------------	----------------------------

Name:	Hour:	Date:	
Notes:			
A	is a	logarithm with base	·
Common Logarithm:			
A	is a	logarithm with base	
Natural Logarithm:		-	
Most calculators have keys for evaluate	9	_ and	_logarithms.
<u>Practice</u> : Evaluate the common and nat	ural logarithms us	sing your calculator.	
1. $\log 8 =$		2. $\ln 0.3 =$	
Notes:			
By the definition of a	, it follo	ws that the logarithm	ic function
$g(x) = \log_b x$ is the	of the	functio	$pon f(x) = b^x.$
This means that:			
Example #3: Simplify the expression.			
1. $e^{\ln 9}$	2. $\log_3(3^4)$	3	8. $\log_2 64^x$

You practice: Simplify the expression.

1. $8^{\log_8 x}$	2. $\log_5 25^x$	3. 10 ^{log 4}
-------------------	------------------	------------------------

Example #4: Find the inverse of the function.

1.
$$y = \log_{3/2} x$$
 2. $y = e^x$

You practice: Find the inverse of the function.

1.
$$y = \ln(x - 4)$$
 2. $y = 6^x$

Name:_____ Hour: _____ Date: _____

Example #4: Graph the following logarithmic functions. State the domain and range.

1.
$$y = \log_2 x$$

Domain: _____

Range: _____

2. $y = \log_3(x - 1) + 2$

