NOTES: Section 6.3 – Perform Function Operations and Composition

Goals: #1 - I can add, subtract, multiply, and divide functions and state their domain.

#2 - I can evaluate compositions of functions and state their domain.

Homework: Lesson 6.3 Worksheet

Notes:

Let f and g be any two functions. We can perform the four basic operations on f and g.

Addition	
Subtraction	
Multiplication	
Division	

The ______ consists of the ______ that are in the domains of ______ *f* and *g*.

Example #1: Perform the following operations on *f* and *g*.

1. Let $f(x) = 4x^{1/2} - 1$ and $g(x) = -9x^{1/2} + 3$. Find the following. a. f(x) + g(x) b. f(x) - g(x)

c. the domains of f + g and f - g

You practice: Perform the following operations on *f* and *g*.

1. Let
$$f(x) = 5x^{1/3} + 1$$
 and $g(x) = -11x^{1/3} - 4$. Find the following.
a. $f(x) + g(x)$ b. $f(x) - g(x)$

c. the domains of f + g and f - g

Example #2: Perform the following operations on *f*, *g*, and *h*.

2. Let f(x) = 6x, $g(x) = x^{3/4}$, and $h(x) = -2x^{1/2}$. Find the following. a. $f(x) \cdot g(x)$ b. $f(x) \cdot h(x)$

c. the domains of $f \cdot g$ and $f \cdot h$

d.
$$\frac{f(x)}{g(x)}$$
 e. $\frac{f(x)}{h(x)}$

f. the domains of
$$\frac{f}{g}$$
 and $\frac{f}{h}$

You practice: Perform the following operations on *f*, *g*, and *h*.

c. the domains of $f \cdot g$ and $f \cdot h$

d.
$$\frac{f(x)}{g(x)}$$
 e. $\frac{g(x)}{h(x)}$

f. the domains of $\frac{f}{g}$ and $\frac{g}{h}$

Notes:

Another operation that can be performed within two functions is ______.

Example #4: Perform the following operations on *f*, *g*, and *h*.

1. Let f(x) = 3x - 8, $g(x) = 2x^2$, and $h(x) = \frac{1}{x+1}$. Find the following. a. f(g(x))b. g(h(x))

d. g(g(x))c. h(f(x))

e. the domains of each composition

You practice: Perform the following operations on *f*, *g*, and *h*.

1. Let f(x) = 5x - 2, $g(x) = -x^2$, and $h(x) = \frac{x-2}{4}$. Find the following. a. f(g(x))b. g(h(x))

c.
$$h(f(x))$$
 d. $g(g(x))$

e. the domains of each composition