NOTES: Section 5.8 – Analyze Graphs of Polynomial Functions

Goals: #1 - I can graph a polynomial function by including x- and y-intercepts, and coordinates of local max/min.

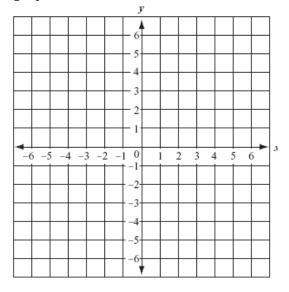
#2 - I can identify the *x*-intercepts (real zeros), local max/min, and least degree, from a graph of a polynomial.

Homework: Lesson 5.8 Worksheet

Warm Up:

1. Find all zeros of the polynomial function $f(x) = x^4 + x^3 + 2x^2 + 4x - 8$

Exploration #1: Work with a partner and answer the following questions.

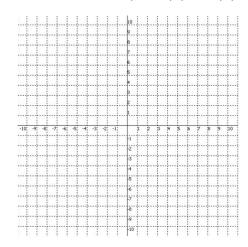

$$f(x) = \frac{1}{6}(x+3)(x-2)^2$$

- 1. What are the *x*-intercepts of this function?
- 2. What is the *y*-intercept of this function?
- 3. Describe the end behavior of the graph of the function.

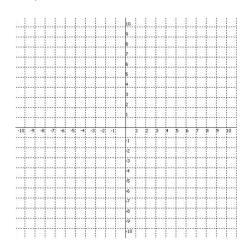
$$f(x) \rightarrow \underline{\hspace{1cm}} as x \rightarrow -\infty$$

$$f(x) \rightarrow \underline{\hspace{1cm}} as x \rightarrow +\infty$$

4. Using this information, graph the function below:



Notes:


- _____: _____: a ______ of the polynomial function f.
- $\underline{\hspace{1cm}}$ is a $\underline{\hspace{1cm}}$ of the polynomial function f.
- ______ is a ______ of the polynomial equation f(x) = 0.
- _____: If ____: If ____: a real number, ____ is an _____ of the graph of the polynomial function f.

Example #1: Graph the function. Identify all intercepts. You must plot points between and beyond each intercept. Use the x/y table to identify points on the graph.

1.
$$h(x) = 0.25(x+2)(x-2)(x-3)$$
 2. $f(x) = x^3 - x^2 - 17x - 15$

2.
$$f(x) = x^3 - x^2 - 17x - 15$$

x-intercept(s):

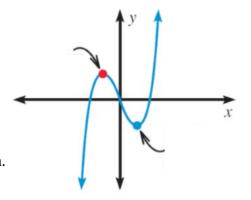
x-intercept(s): ______

y-intercept: _____

y-intercept: _____

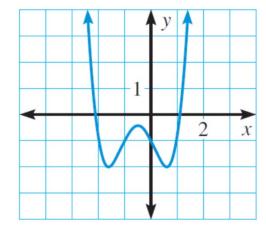
x				
у				

х				
у				

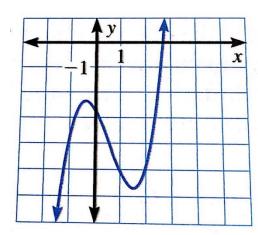

Notes:

Another important characteristic of graphs of _____

is that they have _____ corresponding to


_____ and _____ values.

• The ______ and _____ values are the _____ of the _____ of the graph.



Example #2: Estimate the coordinates of each turning point and state whether each corresponds to a local maximum or a local minimum. Then estimate all real zeros and determine the least degree the function can have.

1.

2.

