\qquad
\qquad Date: \qquad

NOTES: Section 4.8 - Use the Quadratic Formula and the Discriminant

Goals: \#1 - I can use the quadratic formula to solve a quadratic equation.
\#2 - I can find the discriminant of a quadratic equation and use it to find the number and type of solutions.

Homework: Lesson 4.8 Worksheet

Warm Up:
Solve the equation by completing the square.

1. $x^{2}-14 x+9=0$
2. $3 x^{2}-24 x=-48$

Write the following quadratic function in vertex form. Then identify the vertex.
3. $y=3 x^{2}+24 x+40$

Review:

\qquad
\qquad Date: \qquad

Notes:
We can find the solutions to \qquad quadratic \qquad by using the
\qquad :

This formula can be derived from \qquad .

Example \#1: Use the quadratic formula to solve the equation.

1. $x^{2}+3 x=2$
2. $25 x^{2}-18 x=12 x-9$
3. $-x^{2}+4 x=5$

You practice: Use the quadratic formula to solve the equation.

1. $4 x^{2}-10 x=2 x-9$
2. $7 x-5 x^{2}-4=2 x+3$

CHALLENGE: What do you notice about the value the radical symbol in the last 5 examples?
\qquad
\qquad Date: \qquad

Notes:

In the quadratic formula, the expression \qquad is called the \qquad of the quadratic equation \qquad -

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

We can use the \qquad of a quadratic equation to determine the equation's
\qquad and \qquad of \qquad .

Value of discriminant			
Number and type of solutions			
Graph of $y=a x^{2}+b x+c$			

Example \#2: Find the discriminant of the quadratic equation and give the number and types of solutions of the equation.

1. $x^{2}-8 x+17=0$
2. $2 x^{2}=16 x-32$
3. $x^{2}-8 x+15=0$
\qquad
\qquad

You practice: Find the discriminant of the quadratic equation and give the number and types of solutions of the equation.

1. $3 x^{2}+12 x+12=0$
2. $8 x^{2}=9 x-11$
3. $7 x^{2}-2 x=5$

Notes:

In Section 4.5, the function $h=-16 t^{2}+h_{0}$ was used to model the height of a \qquad object. For an object that is \qquad or \qquad an extra term
\qquad must be added to the model to account for the object's \qquad .

- Object is dropped:
- Objected is launched or thrown:

The value of \qquad can be \qquad
\qquad or \qquad depending on whether the object is launched \qquad or \qquad to the ground.

Example \#3: A juggler tosses a ball into the air. The ball leaves the juggler's hand 4 feet above the ground and has an initial vertical velocity of 40 feet per second. The juggler catches the ball when it falls back to the height of 3 feet. How long is the ball in the air?

