NOTES: Section 4.8 - Use the Quadratic Formula and the Discriminant

Goals: #1 - I can use the quadratic formula to solve a quadratic equation.

#2 - I can find the discriminant of a quadratic equation and use it to find the number and type of solutions.

Homework: Lesson 4.8 Worksheet

Warm Up:

Solve the equation by completing the square.

1. $x^2 - 14x + 9 = 0$ 2. $3x^2 - 24x = -48$

Write the following quadratic function in vertex form. Then identify the vertex.

3.
$$y = 3x^2 + 24x + 40$$

ng the
•

Example #1: Use the quadratic formula to solve the equation.

1. $x^2 + 3x = 2$ 2. $25x^2 - 18x = 12x - 9$

3. $-x^2 + 4x = 5$

You practice: Use the quadratic formula to solve the equation.

1. $4x^2 - 10x = 2x - 9$ 2. $7x - 5x^2 - 4 = 2x + 3$

CHALLENGE: What do you notice about the value the radical symbol in the last 5 examples?

Name:	Hour:	Date:

Notes:

In the quadratic formula, the expression ______ is called the ______

of the quadratic equation ______.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

We can use the ______ of a quadratic equation to determine the equation's

______ of ______.

Example #2: Find the discriminant of the quadratic equation and give the number and types of solutions of the equation.

1. $x^2 - 8x + 17 = 0$ 2. $2x^2 = 16x - 32$ 3. $x^2 - 8x + 15 = 0$

Name:	Hour:	Date:

You practice: Find the discriminant of the quadratic equation and give the number and types of solutions of the equation.

1.	$3x^2 + 12x + 12 = 0$	2. $8x^2 = 9x - 11$	3. $7x^2 - 2x = 5$

Notes:

In Section 4.5, the function $h = -16t^2 + h_0$	was used to model th	e height of a
object. For an object that is	or	, an extra term
must be added to the model to accou	nt for the object's	
• Object is <i>dropped</i> :		
• Objected is <i>launched</i> or <i>thrown</i> :		
The value of can be	J	, or
depending on whether the object is launche	ed	
or to the ground.		

Example #3: A juggler tosses a ball into the air. The ball leaves the juggler's hand 4 feet above the ground and has an initial vertical velocity of 40 feet per second. The juggler catches the ball when it falls back to the height of 3 feet. How long is the ball in the air?