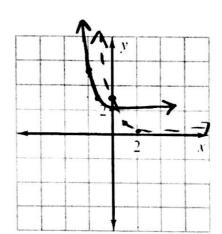
NOTES: Section 7.3 - Graph Exponential Decay Fund

Goals: #1 - I can graph an exponential function with a natural base.

- #2 I can use the natural base in a real life application.
- #3 I can model continuously compounded interest.

Homework: Lesson 7.3 Worksheet

rm Up: 1. $f(x) = 3\left(\frac{1}{4}\right)^{x+2}_{14} + 2$ Up 2



- 2. A new laptop computer costs \$1500. The value of the computer decreases by 22%each year.
 - a. Write an exponential decay model to represent the situation.

$$y = 1500 (1-0.22)$$

 $y = 1500 (0.78)^{t}$

b. Estimate the value of the computer after 2 years.

Exploration #1: Work with a partner and answer the following questions.

1. Complete the table of vaules by using your calculator.

х	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶
$\left(1+\frac{1}{x}\right)^x$	2.594	2.705	2.717	2.718	2.718	2.718

Name:	Hour:	Date:
Name:	nour:	Date.

Notes:

We have worked with ______ numbers such as _____ and ______.

Another special number is called the <u>Natural</u> and is denoted by the letter <u>(the Euler number)</u>.

The natural base e is NYMONM, so we cannot find its exact value. It is defined as:

As *n* approaches $+\infty$, $\left(1+\frac{1}{n}\right)^n$ approaches $e\approx 2.718281828$

Find the e button on your calculator and write the approximation: 2.718281828.

Example #1: Simplify the expression.

1.
$$e^6 \cdot e^3$$

2.
$$\frac{18e^6}{2e^4}$$

3.
$$(4e^{3x})^2$$

You practice: Simplify the expression:

1.
$$2e^{-3} \cdot 6e^{5}$$

2.
$$(10e^{-4x})^3$$

Example #2: Use a calculator to evaluate the expression.

1.
$$e^{-2}$$

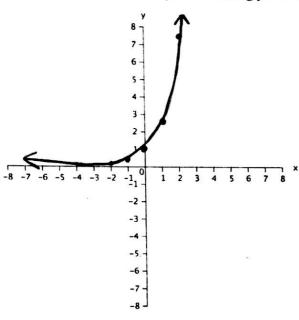
2.
$$e^{0.3}$$

Exploration #2: Work with a partner and answer the following questions.

1. Use your calculator to complete the table.

x	-2	-1	0	1	2
$y=e^x$	0.14	0.37	1	2.72	7.39

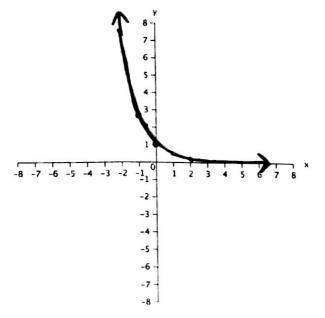
2. Graph the function $y = e^x$ using your table. Then state the domain and range.



3. Use your calculator to complete the table.

x	-2	-1	0	1	2
$y=e^{-x}$	7.39	2.72	1	0.37	0.14

4. Graph the function $y = e^{-x}$ using your table. Then state the domain and range.



Notes:

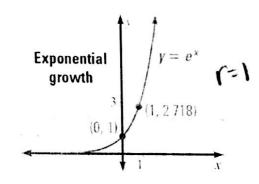
Notes:

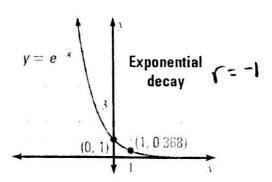
A function of the form _______ is called a natural base exponential function.

• If _______ function is an exponential _______ function.

- If 120, the function is an exponential 0100 function.

The graphs of the basic functions $y = e^x$ and $y = e^{-x}$ are shown below.



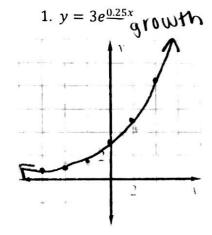


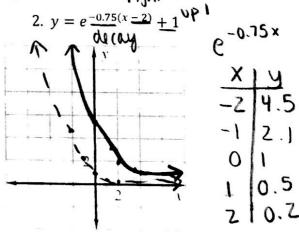
Example #3: Tell whether the function is an example of exponential growth or exponential decay.

1.
$$f(x) = \frac{1}{4}e^{-3x}$$

2.
$$f(x) = 2e^{2x}$$
 $r = 7$

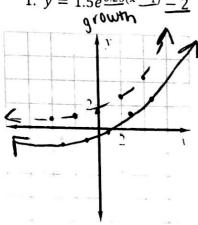
Example #4: Graph the function. State the domain and range.





You practice: Graph the function. State the domain and range.

1.
$$y = 1.5e^{\frac{0.25(x-1)}{2}} - 2$$
 down Z



domain:
$$(-\infty, \infty)$$
 range: $(2, \infty)$

$$y = 1.5e^{0.25 \times}$$

$$\frac{X \mid y}{-4 \mid 0.0}$$

$$-2 \mid 0.9$$

0R	y=1.5	e ^{0.25(x-1)} -Z
<u></u>	<u>X</u> -4	-1.6
	-2	-1.3
	0	-0.8
	2	-0.08
	4	1.2
	v l	3.2

Notes:

In Section 7.1, we learned about COMPOUND in HUREST

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

As the number of times interest in compounded increases, it approaches CONTINUOUS LY compounded interest which is given by the formula:

A - Pe - Time (years)

Principal - Year (%)

Example #5: You deposit \$3500 in an account that pays 4% annual interest. What is the balance after 1 year?

1. What is the balance if the interest is compounded monthly?

$$A = 3500 (1 + \frac{0.04}{12})^{12.1}$$

 $A \approx \begin{bmatrix} 3 & 3642 & 60 \end{bmatrix}$

2. What is the balance if the interest is compounded continuously?