\qquad
\qquad Date: \qquad

NOTES: Section 7.3 - Use Functions Involving e

Goals: \#1 - I can graph an exponential function with a natural base.
\#2 - I can use the natural base in a real life application. \#3 - I can model continuously compounded interest.

Homework: Lesson 7.3 Worksheet

Warm Up:

1. $f(x)=3\left(\frac{1}{4}\right)^{x+2}+2$
domain: \qquad

				y			
			2				
				2	2		x

range: \qquad
2. A new laptop computer costs $\$ 1500$. The value of the computer decreases by 22% each year.
a. Write an exponential decay model to represent the situation.
b. Estimate the value of the computer after 2 years.

Exploration \#1: Work with a partner and answer the following questions.

1. Complete the table of vaules by using your calculator.

\boldsymbol{x}	10^{1}	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}
$\left(\mathbf{1}+\frac{\mathbf{1}}{\boldsymbol{x}}\right)^{\boldsymbol{x}}$						

\qquad
\qquad Date: \qquad

Notes:

We have worked with \qquad numbers such as \qquad and \qquad .

Another special number is called the \qquad and is denoted by the letter \qquad (the Euler number).

The natural base e is \qquad , so we cannot find its exact value. It is defined as:
As n approaches $+\infty,\left(1+\frac{1}{n}\right)^{n}$ approaches $e \approx 2.718281828$

Find the e button on your calculator and write the approximation: \qquad .

Example \#1: Simplify the expression.

1. $e^{6} \cdot e^{3}$
2. $\frac{18 e^{6}}{2 e^{4}}$
3. $\left(4 e^{3 x}\right)^{2}$

You practice: Simplify the expression.

1. $2 e^{-3} \cdot 6 e^{5}$
2. $\left(10 e^{-4 x}\right)^{3}$

Example \#2: Use a calculator to evaluate the expression.

1. e^{-2}
2. $e^{0.3}$
\qquad
\qquad Date: \qquad

Exploration \#2: Work with a partner and answer the following questions.

1. Use your calculator to complete the table.

\boldsymbol{x}	-2	-1	0	1	2
$\boldsymbol{y}=\boldsymbol{e}^{\boldsymbol{x}}$					

2. Graph the function $y=e^{x}$ using your table. Then state the domain and range.

domain: \qquad
range: \qquad
3. Use your calculator to complete the table.

\boldsymbol{x}	-2	-1	0	1	2
$\boldsymbol{y}=\boldsymbol{e}^{-\boldsymbol{x}}$					

4. Graph the function $y=e^{-x}$ using your table. Then state the domain and range.

domain: \qquad
range: \qquad
\qquad
\qquad Date: \qquad

Notes:

A function of the form \qquad is called a natural base exponential function.

- If \qquad the function is an exponential \qquad function.
- If \qquad the function is an exponential \qquad function.

The graphs of the basic functions $y=e^{x}$ and $y=e^{-x}$ are shown below.

Example \#3: Tell whether the function is an example of exponential growth or exponential decay.

1. $f(x)=\frac{1}{4} e^{-3 x}$
2. $f(x)=2 e^{2 x}$

Example \#4: Graph the function. State the domain and range.

1. $y=3 e^{0.25 x}$

domain: \qquad
range: \qquad
2. $y=e^{-0.75(x-2)}+1$

domain: \qquad
range: \qquad
\qquad
\qquad Date: \qquad

You practice: Graph the function. State the domain and range.

1. $y=1.5 e^{0.25(x-1)}-2$

				y			
			2				
				2			x

domain: \qquad
range: \qquad

Notes:

In Section 7.1, we learned about \qquad :

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

As the number of times interest in compounded increases, it approaches \qquad compounded interest which is given by the formula:

Example \#5: You deposit \$3500 in an account that pays 4\% annual interest. What is the balance after 1 year?

1. What is the balance if the interest is compounded monthly?
2. What is the balance if the interest is compounded continuously?
