## QUICK REVIEW - Sections 6.1 - 6.2

- Goals: #1 I can interchange an expression between rational and radical notation, and evaluate the expression (using a calculator).
  - #2 I can evaluate a rational or radical expression (without using a calculator).
  - #3 I can solve equations using nth roots.
  - #4 I can simplify a numerical expression using properties of radicals and rational exponents.
  - #5 I can simplify a variable expression using properties of radicals and rational exponents.
  - #6 I can add and subtract expressions with radicals and rational exponents.







Let's keep practicing!: Evaluate the expression without using a calculator.

1.)  $8^{2/3}$ 

2.)  $81^{-3/2}$ 

3.)  $-125^{4/3}$ 

4.)  $(-32)^{3/5}$ 

Evaluate the expression using a calculator. Round answers to the nearest <u>hundredth</u>.

5.)  $\sqrt[9]{-230}$ 

6.)  $25^{-1/3}$ 

7.)  $(\sqrt[4]{187})^3$ 

Solve the equation. Round your answer to two decimal places when necessary.

8.) 
$$3x^5 + 18 = -12$$

9.) 
$$(x+4)^4 = 21$$

Simplify the expression. Assume all variables are positive.

10.) 
$$x^{2/3} \cdot x^{1/4}$$

11.) 
$$\left(\sqrt{x} \bullet \sqrt[3]{x}\right)^6$$

12.) 
$$\sqrt[5]{\frac{3}{4}}$$

13.) 
$$\sqrt[4]{80} + 3\sqrt[4]{405}$$

14.) 
$$\sqrt[5]{6xy^3z^2} \cdot \sqrt[5]{16x^5yz^8}$$

15.) 
$$\frac{\sqrt[4]{96x^3y^6}}{\sqrt[4]{4y^2}}$$

16.) 
$$\sqrt[3]{\frac{6x^6}{5}}$$