\qquad
\qquad Date: \qquad

NOTES: Section 5.7 - Apply the Fundamental Theorem of Algebra

Goals: \#1 - I can identify the number of solutions or zeros in a polynomial.
\#2 - I can find all the zeros (real, imaginary, and repeated) in a polynomial.
\#3 - I can write a polynomial with given zeros.
\#4 - I can determine the number and type of zeros of a polynomial given the degree and graph.

Homework: Lesson 5.7 Worksheet

Exploration \#1: Work with a partner and answer the following questions.

1. How many zeros are in the following graph?
$f(x)=3 x-2$
$f(x)=2 x^{2}-x-1$

Notes:
-
If a \qquad $f(x)$ has a \qquad then the equation
$f(x)=0$ has exactly \qquad given each
\qquad counts as \qquad .

Example \#1: Find the number of solutions or zeros of the following polynomial.

1. $x^{3}+5 x^{2}+4 x+20=0$
2. $f(x)=x^{4}-8 x^{3}+18 x^{2}-27$
\qquad
\qquad Date: \qquad

Example \#2: Find all zeros of the polynomial function.

1. $f(x)=x^{5}-4 x^{4}+4 x^{3}+10 x^{2}-13 x-14$

You practice: Find all zeros of the polynomial function.

1. $f(x)=x^{5}-2 x^{4}+8 x^{2}-13 x+6$
\qquad
\qquad Date: \qquad

Notes:

\qquad

- If a ___ $f(x)$ has \qquad as an imaginary zero, then
\qquad is also a \qquad of f.
- If a \qquad $f(x)$ has \qquad as an imaginary zero, then
\qquad is also a \qquad of f.

Example \#3: Write a polynomial function f of least degree that has rational coefficients, a leading coefficient of 1 , and 3 and $2+\sqrt{5}$ as zeros.

You practice: Write a polynomial function f of least degree that has rational coefficients, a leading coefficient of 1 , and $2,2 i$, and $4-\sqrt{6}$ as zeros.

