NOTES: Section 5.7 – Apply the Fundamental Theorem of Algebra

Goals: #1 - I can identify the number of solutions or zeros in a polynomial.

- #2 I can find all the zeros (real, imaginary, and repeated) in a polynomial.
- #3 I can write a polynomial with given zeros.
- #4 I can determine the number and type of zeros of a polynomial given the degree and graph.

Homework: Lesson 5.7 Worksheet

Exploration #1: Work with a partner and answer the following questions.

1. How many zeros are in the following graph?

Example #1: Find the number of solutions or zeros of the following polynomial.

1.
$$x^3 + 5x^2 + 4x + 20 = 0$$

2. $f(x) = x^4 - 8x^3 + 18x^2 - 27$

Example #2: Find all zeros of the polynomial function.

1. $f(x) = x^5 - 4x^4 + 4x^3 + 10x^2 - 13x - 14$

You practice: Find all zeros of the polynomial function.

1. $f(x) = x^5 - 2x^4 + 8x^2 - 13x + 6$

Name:			Hour:	Date:
Notes:				
• _				::
-	If a		f(x) has	as an imaginary zero, then
		is also a	of <i>f</i> .	
-	If a		f(x) has	as an imaginary zero, then
		is also a	of <i>f</i> .	

Example #3: Write a polynomial function *f* of least degree that has rational coefficients, a leading coefficient of 1, and 3 and $2 + \sqrt{5}$ as zeros.

You practice: Write a polynomial function *f* of least degree that has rational coefficients, a leading coefficient of 1, and 2, 2*i*, and $4 - \sqrt{6}$ as zeros.