| Name:   | Hour: | Date: |
|---------|-------|-------|
| ivanic. | mui.  | Date. |

## NOTES: Section 4.4 – Solve $ax^2 + bx + c = 0$ by Factoring

Goals: #1 - I can factor a quadratic in the form  $ax^2 + bx + c$  when  $a \ne 1$ .

#2 - I can factor a difference of two squares when  $a \neq 1$ .







#3 - I can use the zero product property to solve  $ax^2 + bx + c = 0$  by factoring when  $a \neq 1$ 

Homework: Lesson 4.4 Worksheet

**Exploration #1:** Work with a partner. Find the product.

1. 
$$(4y-3)(3y+8)$$

2. 
$$(5m+6)(5m-6)$$

**CHALLENGE:** Can you go backwards? Break  $5x^2 - 17x + 6$  into factors.

## Notes:

Recall, the standard form of a quadratic function:

When \_\_\_\_\_, it is simple to factor!

Example:  $x^2 + 2x - 35$ 

When \_\_\_\_\_, it is not as simple... We are going to use the \_\_\_\_\_

to factor these beasts.

| Name: | Hour:  | Date: |
|-------|--------|-------|
| rume  | 110u1. | Date: |

**Example #1:** Factor the expression.

1. 
$$5x^2 - 17x + 6$$

2. 
$$8t^2 + 38t - 10$$

You practice: Factor the expression.

1. 
$$3x^2 + 5x - 12$$

2. 
$$12u^2 - 28u - 24$$

## Notes:

There are still \_\_\_\_\_\_ factoring patterns we can look for!

• \_\_\_\_\_

Examples:

• \_\_\_\_\_

Examples:

Hour: \_\_\_\_\_ Date: \_\_\_\_

**Example #2:** Factor the expression.

1. 
$$16x^2 - 1$$

2. 
$$4r^2 - 28r + 49$$

## Notes:

We can still use \_\_\_\_\_\_ to solve certain \_\_\_\_\_\_.

**Example #3:** Solve the equation.

1. 
$$3x^2 + 10x - 8 = 0$$

2. 
$$5p^2 - 16p + 15 = 4p - 5$$

You practice: Solve the equation.

1. 
$$6x^2 - 3x - 63 = 0$$

2. 
$$12r^2 + 7r + 2 = r + 8$$