NOTES: Section 4.3 – Solve $x^2 + bx + c = 0$ by Factoring

Goals: #1 - I can factor a quadratic in the form $ax^2 + bx + c$ when a = 1

#2 - I can factor a difference of two squares.

9

- #3 I can factor a perfect square trinomial.
- #4 I can use the zero product property to solve $ax^2 + bx + c = 0$ by factoring when a=1

Homework: Lesson 4.3 Worksheet

Warm Up: Graph each function on the same coordinate plane. Identify the graph's axis of symmetry, vertex, *y*-intercept, whether the graph opens up or down, and its maximum/minimum value.

1.
$$f(x) = -2(x+2)^2 + 6$$

2. $g(x) = \frac{1}{3}(x-1)(x+5)$

AOS: _____

vertex: _____

y-int:

opens: _____

opens: _____

AOS: _____

vertex: _____

y-int:

opens: _____

max./min. value: _____ max./min. value: _____

X			
У			

X y

work: work:

Exploration #1: Work with a partner. Find the product.

1.
$$(m-8)(m-9)$$

2.
$$(y + 20)(y - 20)$$

Name:	Hour:	Date:
Notes:		
A	is an expression that is either a r	number, a variable, or
the product of a number and one Examples:	or more variables.	
AExamples:	is the sum of two monomials.	
A Examples:	is the sum of three monomials.	

Example #1: Factor the expression.

1.
$$x^2 - 9x + 20$$
 Factors of 20:

2.
$$x^2 + 3x - 12$$
 Factors of -12:

3.
$$x^2 - 3x - 18$$
 Factors of -18:

4.
$$r^2 + 2r - 63$$
 Factors of -63:

Name:	Hour:	Date:	
Notes:			
There are	are factoring patterns we can look for!		
• Examples:		:	
•Examples:		:	
Example #2: Factor the expression	on.		
1. $x^2 - 49$		12d + 36	
3. $q^2 - 9$	4. y ² +	- 16 <i>y</i> + 64	
Notes:			
We can use	to solve certain		
We set the quadratic equation eq • Zero Product Property:	qual to and use the		
The solutions of a quadratic equa	ation are called the	of the equation.	

Example #3: Solve the equation.

1.
$$x^2 + 2x - 35 = 0$$

2.
$$u^2 = -9u$$

Example #4: Find the roots of the equation.

1.
$$r^2 + 2r = 80$$

$$2. a^2 - 49 = 0$$

Exploration #1: Work with a partner and answer the following questions.

- 1. Rewrite the quadratic function in intercept form: $y = x^2 x 12$
- 2. Graph the function you found in #1.

b. What is the *y*-value of the *x*-intercepts?

Name:	Hour:	Date:	
Notes			
Notes:			
Recall the	of a quadratic function:		
Because quadratic function's values are	when a	nd, these are	
also called of the function.			

Example #5: Find the zeros of the function by rewriting the function in intercept form.

1.
$$y = x^2 + 12x + 36$$

$$2. \ y = x^2 - 7x - 30$$

Example #6: The function $y = -1.17(x - 6)^2 + 42$ models the leap of a gymnast where x is the horizontal distance (in inches) and y is the corresponding height (in inches). What is the gymnast's maximum height? How far does she leap?