\qquad
\qquad Date: \qquad

NOTES: Section 13.3 - Evaluate Trigonometric Functions of Any Angle

Goals: \#1 - I can evaluate the 6 trig functions for a quadrantal function without using a calculator.
\#2 - I can find the reference angle for any given angle, in both degrees and radians.
\#3 - I can evaluate trig functions for special angles (multiples of 30° and 45°) in quadrants $1,2,3$, and 4 without using a calculator.
\#4 - I can apply the formula for horizontal distance of a projectile launched in terms of initial velocity and launch angle.

Homework: Lesson 13.3 Worksheet

Warm Up:

1. Draw an angle with the given measure in standard position.
a. $\frac{26 \pi}{9}$

b. -900°

2. Evaluate the trigonometric function. When possible, give an exact answer. When using a calculator, round answers to the nearest hundredth.
a. $\tan \frac{\pi}{6}$
b. $\csc \frac{4 \pi}{15}$
\qquad
\qquad Date: \qquad

Notes:

We can evaluate trigonometric functions of \qquad angle.

Let θ be an angle in standard position, and let (x, y) be the point where the \qquad side of θ intersects the circle \qquad .

$$
\sin \theta=
$$

$$
\csc \theta=
$$

$\cos \theta=$
$\sec \theta=\square$

$$
\tan \theta=
$$

$$
\cot \theta=
$$

Example \#1: Let $(-12,5)$ be a point on the terminal side of an angle θ in standard position. Evaluate the six trigonometric functions of θ.

Notes:

The circle \qquad , which has center $(0,0)$ and radius 1 , is called the \qquad _.

$$
\sin \theta=-=\square=\square=
$$

A is an angle in standard position whose

Terminal side lies on an \qquad .The meausre is always a multiple of \qquad or \qquad .
\qquad
\qquad Date: \qquad

Example \#2: Use the unit circle to evaluate the six trigonometric functions of $\theta=450^{\circ}$

Notes:

How can we find a trig function of \qquad angle? We use \qquad -.

The \qquad for θ is the acute angle formed by the \qquad side of θ and the \qquad .

Example \#3: Sketch the angle. Then find its reference angle. Answer in the unit of the given angle.

1. $\theta=-165^{\circ}$
2. $\theta=\frac{7 \pi}{4}$

\qquad
\qquad Date: \qquad

You practice:

1. Use the unit circle to evaluate the six trigonometric functions of $\theta=4 \pi$

2. Sketch the angle. Then find its reference angle. Answer in the unit of the given angle.
a. $\theta=470^{\circ}$
b. $\theta=-\frac{7 \pi}{3}$

Notes:

Finally we can evaluate \qquad trig function for \qquad θ

STEP 1:

STEP 2:

STEP 3:

Signs of Function Values

Quadrant II $\sin \theta, \csc \theta:$ $\cos \theta, \sec \theta:$ $\tan \theta, \cot \theta:$	$y \quad$Quadrant I $\sin \theta, \csc \theta:$ $\cos \theta, \sec \theta:$ $\tan \theta, \cot \theta:$ Quadrant III $\sin \theta, \csc \theta:$ $\cos \theta, \sec \theta:$ $\tan \theta, \cot \theta:$
Quadrant IV $\sin \theta, \csc \theta:$ $\cos \theta, \sec \theta:$ $\tan \theta, \cot \theta:$	

\qquad
\qquad Date: \qquad

Example \#4: Evaluate the following trig functions.

1. $\cos \left(-225^{\circ}\right)$
2. $\cot \frac{10 \pi}{3}$

You practice: Evaluate the following trig functions.

1. $\tan \left(240^{\circ}\right)$
2. $\sec \frac{-5 \pi}{3}$

Notes:

The horizontal distance d (in feet) traveled by a projectile launced at an angle θ and with an initial speed v (in feet per second) is given by:

Example \#5: You kick a soccer ball at an intial speed of 46 feet per second, projected an an angle of 30°. How far will the ball travel horizontally before hitting the ground?

