# NOTES: Section 13.3 – Evaluate Trigonometric Functions of Any Angle

Goals: #1 - I can evaluate the 6 trig functions for a quadrantal function without using a calculator.

- #2 I can find the reference angle for any given angle, in both degrees and radians.
- #3 I can evaluate trig functions for special angles (multiples of 30° and 45°) in quadrants 1, 2, 3, and 4 without using a calculator.
- #4 I can apply the formula for horizontal distance of a projectile launched in terms of initial velocity and launch angle.

Homework: Lesson 13.3 Worksheet

## Warm Up:

1. Draw an angle with the given measure in standard position.



2. Evaluate the trigonometric function. When possible, give an exact answer. When using a calculator, round answers to the nearest hundredth.

| Name:                             | Hour:                                       | Date:                |
|-----------------------------------|---------------------------------------------|----------------------|
| Notes:                            |                                             | <b>≜</b> y           |
| We can evaluate trigonom          | etric functions of angle                    | e. (x, y)            |
| Let $\theta$ be an angle in stand | ard position, and let $(x, y)$ be the point | t where $\leftarrow$ |
| the sid                           | e of $	heta$ intersects the circle          |                      |
| $\sin \theta =$                   | $\csc \theta =$                             | ţ                    |
| $\cos \theta =$                   | $\sec \theta =$                             |                      |
| $\tan \theta =$                   | $\cot \theta =$                             |                      |

**Example #1:** Let (-12, 5) be a point on the terminal side of an angle  $\theta$  in standard position. Evaluate the six trigonometric functions of  $\theta$ .

|                   |      | t  | У |   |
|-------------------|------|----|---|---|
|                   | -12, | 5) |   |   |
| $\langle \rangle$ |      | 2  | θ |   |
| -                 |      | À  | 4 | x |
|                   |      |    |   |   |

| Notes:                   |                                          |                  |
|--------------------------|------------------------------------------|------------------|
| The circle               | , which has center (0, 0) and radiu      | ıs 1, <b>∳</b> y |
| is called the            |                                          | 0                |
| $\sin \theta == =$       | $\cos \theta == =$                       | (x, y) r = 1     |
| A                        | _ is an angle in standard position whose | ¥ +              |
| Terminal side lies on an | The meausre is always a multiple         | e of or          |

| Name: | Hour: | Date: |
|-------|-------|-------|
|       |       |       |

**Example #2:** Use the unit circle to evaluate the six trigonometric functions of  $\theta = 450^{\circ}$ 



#### Notes:

How can we find a trig function of \_\_\_\_\_\_ angle? We use \_\_\_\_\_\_.



**Example #3:** Sketch the angle. Then find its reference angle. Answer in the unit of the given angle.



| Name: | Hour: | Date: |
|-------|-------|-------|
|       |       |       |

### You practice:

1. Use the unit circle to evaluate the six trigonometric functions of  $\theta = 4\pi$ 







| Name: | Hour: | Date: |
|-------|-------|-------|
|       |       |       |

**Example #4:** Evaluate the following trig functions.

1. 
$$\cos(-225^{\circ})$$
 2.  $\cot\frac{10\pi}{3}$ 

You practice: Evaluate the following trig functions.

| 1. tan(240°) | 2. $\sec \frac{-5\pi}{3}$ |
|--------------|---------------------------|
|--------------|---------------------------|

## Notes:

The horizontal distance d (in feet) traveled by a projectile launced at an angle  $\theta$  and with an initial speed v (in feet per second) is given by:

**Example #5:** You kick a soccer ball at an intial speed of 46 feet per second, projected an an angle of 30°. How far will the ball travel horizontally before hitting the ground?