NOTES: Section 12.3 – Solving Radical Equations

Goals: #1 - I can solve a radical equation.

Homework: Section 12.3 Worksheet

Warm Up:

1. Simplify the expression.

a.
$$\sqrt{2}(7\sqrt{3} + \sqrt{2})$$
 b. $\sqrt{\frac{5}{6}}$

c.
$$3\sqrt{17} + 9\sqrt{11} + \sqrt{17}$$
 d. $\sqrt{80} - \sqrt{45}$

Exploration #1: Work with a partner and answer the following questions.

1. Solve the following equations:

a.
$$x^2 = 25$$
 b. $3x^2 - 7 = 41$

- 2. What operation "undoes" squaring a number?
- 3. What operation "undoes" taking the square root of a number?

Date
both sides of the equation.

Example #1: Solve the radical equation.

1.
$$\sqrt{x} - 7 = 0$$
 2. $\sqrt{2x - 3} + 4 = 5$

You practice: Solve the radical equation.

1.
$$\sqrt{x-6} = 4$$
 2. $\sqrt{3x+1} - 3 = 1$

Notes:

Squaring both sides of an equation can introduce a ______ that does

______ satisfy the original equation. This is called an ______.

When we solve by ______ both sides of an equation, we need to check each solution in the ______ equation.

Name:	Hour:	Date:

Example #2: Solve the radical equation.

1.
$$\sqrt{x+2} = x$$
 2. $\sqrt{x} + 13 = 0$

You practice: Solve the radical equation.

1.
$$x = \sqrt{8 - 2x}$$
 2. $\sqrt{x} + 4 = 0$