\qquad
\qquad Date: \qquad

NOTES: Section 12.3 - Solving Radical Equations

Goals: \#1-I can solve a radical equation.
Homework: Section 12.3 Worksheet

Warm Up:

1. Simplify the expression.
a. $\sqrt{2}(7 \sqrt{3}+\sqrt{2})$
b. $\sqrt{\frac{5}{6}}$
c. $3 \sqrt{17}+9 \sqrt{11}+\sqrt{17}$
d. $\sqrt{80}-\sqrt{45}$

Exploration \#1: Work with a partner and answer the following questions.

1. Solve the following equations:
a. $x^{2}=25$
b. $3 x^{2}-7=41$
2. What operation "undoes" squaring a number?
3. What operation "undoes" taking the square root of a number?
\qquad
\qquad Date: \qquad

Notes:

To \qquad radical equations, we \qquad both sides of the equation.

Example \#1: Solve the radical equation.

1. $\sqrt{x}-7=0$
2. $\sqrt{2 x-3}+4=5$

You practice: Solve the radical equation.

1. $\sqrt{x-6}=4$
2. $\sqrt{3 x+1}-3=1$

Notes:

Squaring both sides of an equation can introduce a \qquad that does
\qquad satisfy the original equation. This is called an \qquad .

When we solve by \qquad both sides of an equation, we need to check each solution in the \qquad equation.
\qquad Hour: \qquad Date: \qquad

Example \#2: Solve the radical equation.

1. $\sqrt{x+2}=x$
2. $\sqrt{x}+13=0$

You practice: Solve the radical equation.

1. $x=\sqrt{8-2 x}$
2. $\sqrt{x}+4=0$
