NOTES: Section 10.3 - Define and Use Probability

Goals: #1 - I can find the probability of a given event.

- #2 I can find the odds (in favor or against) a given event.
- #3 I can find the geometric probability of an event.

Homework: Lesson 10.3 Worksheet

Warm Up:

1. The manager of a chain of restaurants must choose 6 restaurants from 11 for a promotion. How many different selections can be made?

2. A committee consists of 10 Republicans and 8 Democrats. In how many ways can a sub-committee be chosen if it has 5 Republicans and 4 Democrats?

3. Use the binomial theorem to expand $(3-x^2)^4$ $1 (3)^4(-x^2)^6 + 4(3)^3(-x^2)^4 + 4(3)^2(-x^2)^2 + 4(3)^2(-x^2)^3 + 1(3)^6(-x^2)^4 + \frac{3}{3} \frac{3}{3} \frac{1}{4}$ $81 - 108x^2 + 54x^4 - 12x^6 + x^8$ $\boxed{x^8 - 12x^6 + 54x^4 - 108x^2 + 81}$

Exploration #1:

1. How many ways could you spin a 2?

2. How many ways could you spin a 5?

3. What is the total number of outcomes?

4. What is the *probability* that you will spin a 5?

Nama	**	D-4-
Name:	Hour:	Date:

Notes:

The <u>OUTCOMES</u> of an event is the possible results of the event.

that the event will occur.

When all outcomes are equally likely, the
$$\frac{PYODWIIIY}{OMES}$$
 that an event A will occur is:
$$P(A) = \frac{\text{# of out comes in event } A}{\text{Total # of outcomes}}$$

Example #1:

A card is randomly drawn from a standard deck of 52 cards. Find the probability of drawing the given card. Write your answer as a simplified fraction.

1. An eight
$$\frac{4}{52} = \boxed{1}$$

2. A red king
$$\frac{2}{52} = \boxed{\frac{1}{2\sqrt{9}}}$$

You practice:

A marble is randomly drawn from a bag. The bag contains 3 red marbles, 2 green marbles, 5 yellow marbles, and 4 blue marbles. Find the probability of choosing the given marble. Write your answer as a simplified fraction.

1. A yellow marble
$$\sqrt{\frac{5}{14}}$$

$$4 + 3 \qquad \frac{7}{14} = \boxed{2}$$

Name:	Hour:	Date:
Notes: You can also use 6005 to measure the	likelihood	that an event will occur.
Odds measure the changes in <u>FQVO</u> <u>QQQINST</u> an event occurring: Odds in # of fQVOY: in 6	outcomes # Event A - No	of outcomes of in event A
odds # of against: Not i	outcomes the nevent A in	of outcomes n event A

Example #2:

A marble is randomly drawn from a bag. The bag contains 6 red marbles, 12 yellow marbles, and 9 blue marbles.

1. Find the odds in favor of drawing a red marble.

2. Find the odds against drawing a marble.

You practice:

A card is drawn from a standard deck of 52 cards.

1. Find the odds in favor of drawing a 10.

2. Find the odds against drawing a club.

Name:	Hour:	Date: _	

Notes:

Example #3: You throw a dart at the square board shown. Your dart is equally likely to hit any point inside the board. Find the probability that a dart thrown at the square target will hit the given region. Round your answer to three decimal places.

- 1. The center $\frac{\%(3)^2}{324}$ $\approx \boxed{0.087}$
- 2. The three rings (10, 5, and 2 points)

3. The 2 point or 5 point ring

$$\frac{\gamma (9)^{2} - \gamma (3)^{2}}{324}$$

$$\frac{721}{324}$$
 ≈ 0.698

