Lesson 4.3 Worksheet

Factor the expression, if possible.

1.)
$$r^2 + 15r + 56$$

2.)
$$p^2 + 2p + 4$$

3.)
$$b^2 + 3b - 40$$

4.)
$$m^2 + 8m - 65$$

5.)
$$x^2 - 24x + 144$$

6.)
$$x^2 - 36$$

7.)
$$x^2 + 8x + 16$$

8.)
$$z^2 - 121$$

9.)
$$s^2 - 26s + 169$$

Solve the equation.

10.)
$$x^2 - 8x + 12 = 0$$

11.)
$$w^2 - 16w + 48 = 0$$
 12.) $n^2 - 6n = 0$

12.)
$$n^2 - 6n = 0$$

Find the roots of the equation.

13.)
$$14x - 49 = x^2$$

14.)
$$b^2 - 81 = 0$$

15.)
$$0 = x^2 + 6x + 8$$

Find the zeros of the function by rewriting the function in intercept form.

16.)
$$y = x^2 + 7x - 30$$

17.)
$$f(x) = x^2 + 11x$$

18.)
$$g(x) = x^2 + 19x + 84$$

19.) A city's skate park is a rectangle 100 feet long by 50 feet wide. The city wants to triple the area of the skate park by adding the same distance x to the length and the width. Write and solve an equation to find the value of x. What are the new dimensions of the skate park?

AOS: _____

y-int: _____

opens: _____

21.) y = (x + 2)(x - 4)

AOS: _____

vertex: _____

y-int: _____

opens: _____

max./min. value: _____

y-axis by 2

max./min. value: _____

х			
у			

work:	work
WOIK:	work:

х			
у			

- 22.) If an object is propelled straight upward from Earth at an initial velocity of 80 feet per second, its height after t seconds is given by the function h(t) = -16t(t-5), where t is the time in seconds after the object is propelled and h is the objects height.
 - a.) How many seconds after it is propelled will the object hit the ground?
 - b.) What is the object's maximum height?

23.) The function $y = -0.03(x - 14)^2 + 6$ models the jump of a red kangaroo where x is the horizontal distance (in feet) and y is the corresponding height (in feet). What is the kangaroo's maximum height? How long is the kangaroo's jump?

