## NOTES: Section 9.2 - Solving Quadratic Equations by Finding Square Roots.

Goals: #1 - I can solve a quadratic equation by finding square roots.







Homework: Section 9.2 Worksheet

Warm Up: Evaluate the expression. Give the exact value if possible. Otherwise, approximate to the nearest hundredth.

1. 
$$-\sqrt{81}$$

2. 
$$8 \pm \sqrt{8}$$

3. 
$$\frac{7 \pm 3\sqrt{12}}{-6}$$

$$\frac{7 \pm 10.38}{-h}$$

**Exploration #1:** Work with a partner and answer the following questions.

1. What is the *inverse operation* of squaring a number?

Square rooting a number

2. What is the difference between an expression and an equation?

3. Solve: 
$$x^2 = 16$$

| Name: | Hour: | Date: |
|-------|-------|-------|
|       |       | Dutc. |

Notes:

A QUATO EQUATION is an equation that can be written in the standard form:

$$ax^2 + bx + c = 0$$

There are various MYNU to solve quadratic equations. Let's took a look at one method!

**Example #1:** Solve the equation. Write the solutions as integers if possible. Otherise, write them as a radical expression.

1. 
$$x^2 = 4$$

$$\sqrt{X^2} = \pm \sqrt{4}$$

$$X = \pm 2$$

2. 
$$n^2 = 5$$

**You practice:** Solve the equation. Write the solutions as integers if possible. Otherise, write them as a radical expression.

1. 
$$x^2 = 81$$

2. 
$$n^2 = 10$$

3. 
$$x^2 = 0$$

4. 
$$y^2 = -1$$

no real solution

Example #2: Solve the equation.

1. 
$$3x^{2} - 48 = 0$$
 $+48 + 48$ 

$$\frac{3x^{2} = 48}{3} = \frac{48}{3}$$

$$x^{2} = 16$$

$$\sqrt{x^{2}} = \pm \sqrt{16}$$

$$x = \pm 4$$

You practice: Solve the equation.

2. 
$$27 - 3y^{2} = 0$$
  
 $-27$ 
 $-3y^{2} = -27$ 
 $-3$ 
 $-3$ 
 $y^{2} = 9$ 
 $-3$ 
 $y^{2} = 1$ 
 $-3$ 

2. 
$$2x^{2} - 72 = 0$$
  
 $+72 + 72$   
 $\frac{7}{2}x^{2} = \frac{72}{7}$   
 $x^{2} = 3b$   
 $x^{2} = 3b$   
 $x^{2} = 1$   
 $x^{2} = 1$   
 $x^{3} = 1$   
 $x^{3} = 1$   
 $x^{3} = 1$