\qquad
\qquad
\qquad

NOTES: Section 9.2 - Solving Quadratic Equations by Finding Square Roots.

Goals: \#1 - I can solve a quadratic equation by finding square roots. Homework: Section 9.2 Worksheet

Warm Up: Evaluate the expression. Give the exact value if possible. Otherwise, approximate to the nearest hundredth.

1. $-\sqrt{81}$
2. $8 \pm \sqrt{8}$
3. $\frac{7 \pm 3 \sqrt{12}}{-6}$

Exploration \#1: Work with a partner and answer the following questions.

1. What is the inverse operation of squaring a number?
2. What is the difference between an expression and an equation?
3. Solve: $x^{2}=16$
\qquad
\qquad Date: \qquad

Notes:

A \qquad is an equation that can be written in the standard form:

$$
a x^{2}+b x+c=0
$$

There are various \qquad to solve quadratic equations. Let's took a look at one method!

Example \#1: Solve the equation. Write the solutions as integers if possible. Otherise, write them as a radical expression.

1. $x^{2}=4$
2. $n^{2}=5$

You practice: Solve the equation. Write the solutions as integers if possible. Otherise, write them as a radical expression.

1. $x^{2}=81$
2. $n^{2}=10$
3. $x^{2}=0$
4. $y^{2}=-1$
\qquad
\qquad Date: \qquad

Example \#2: Solve the equation.

1. $3 x^{2}-48=0$
2. $27-3 y^{2}=0$

You practice: Solve the equation.

1. $6 x^{2}-150=0$
2. $2 x^{2}-72=0$
3. $7 x^{2}+30=9$
4. $2 y^{2}+13=41$
