NOTES: Section 8.2 – Zero and Negative Exponents

Simplify the expression.

1. $(2y)^4$ 2. $(3b^3)^2 \cdot b$

Exploration #1: Work with a partner and answer the following questions.

- 1. Evaluate the following exponents: a. $10^1 =$ b. $10^2 =$ c. $10^3 =$ d. $10^0 =$
- 2. Use your calculator to evaluate the following exponents and write your answer as FRACTIONS :

a.
$$10^{-1} =$$
 b. $10^{-2} =$ c. $10^{-3} =$

- d. Can you write your answer in letters a c using EXPONENTS?
- 3. What do you notice?

Name:		Hour:	Date:	
Notes:				
Example:	to the powe	r of	is	
When numbers have a Example:		exponent, it is also t	:heir	
Example #1: Evaluate the ex 1. 7 ⁻²	xpression. 2. (–6) ⁰	3. (-5) ⁻³	4. $(\frac{2}{3})^{-2}$	
You practice: Evaluate the e $1. (-7)^{-1}$	expression. 2. $\left(\frac{1}{5}\right)^{-3}$	3. (5) ⁻³	4. (-100) ⁰	
Example #2: Simplify the expression. Write your answer using only positive exponents.				

1. $2x^2y^{-3}$ 2. $(5a)^{-2}$ 3. $\frac{c^{-2}}{d^{-3}}$

You practice: Simplify the expression. Write your answer using only positive exponents.

1. $(5b)^{-3}$ 2. $2x^{-3}y^{3}$ 3. $\frac{3}{x^{-2}}$

NT		
Name:	Hour:	Date:

Exploration #2: Work with a partner and answer the following questions.

- 1. How can you write 7⁵ as products?
- 2. How can you write 7^3 as products?
- 3. How can you divide $\frac{7^5}{7^3}$? What about $\frac{x^{10}}{x^4}$? Can you write your answer using exponents?
- 4. Complete: $\frac{a^m}{a^n} = a^{\square}$

Notes:

To ______ powers that have the ______ base, we _____ the exponents. Example:

Example #3: Simplify the expression.

1. $\frac{x^9}{x^2}$ 2. $\frac{(-4)^7}{(-4)^5}$ 3. $\frac{p^8 \cdot p^{10}}{p^{18}}$

You practice: Simplify the expression.

2. $\frac{3^{10}}{3^7}$ 2. $\frac{y^{100}}{y^{99}}$ 3. $\frac{m^7}{m^2 \cdot m}$