NOTES: Section 7.2 – Graph Exponential Decay Functions

Goals: #1 - I can graph exponential decay functions and state the domain and range.

#2 - I can use an exponential decay model in a real life situation. Homework: Lesson 7.2 Worksheet

- 2. You deposit \$1500 into an account that pays 3% annual interest compounded daily. What will be the balance in your account after 1 year?
- 3. In 1992, 1219 parakeets were observed in the United States. For the next 11 years, about 12% more parakeets were observed each year. Write an exponential growth model for the number of parakeets observed in the U.S. since 1992.

Exploration #1: Work with a partner and answer the following questions.

1. Complete the table of vaules to graph the following function.

Example #1: Graph the function. Then state the domain and range.

Example #2: Tell whether the function represents *exponential growth* or *exponential decay*.

1. $f(x) = 3\left(\frac{3}{4}\right)^x$ 2. $f(x) = -4\left(\frac{5}{2}\right)^x$

Name:	Hour:	Date:
Notes:		
To graph a function of the form $y = a \cdot b^{x-h} + b^{x-h}$	k, begin by sketching	the graph of
Then translate the graph	by	_units and
byu	nits.	

Example #3: Graph the function. Then state the domain and range.

domain: _____

range: _____

You practice: Graph the function. Then state the domain and range.

1.
$$y = 3\left(\frac{1}{2}\right)^{x+1} - 2$$

domain: _____

range: _____

Name:	Hour:	Date:
Notes:		

When a real-life quantity ______ by a fixed ______ each year (or other time period), the amount *y* of the quantity after *t* years can be modeled by the equation

$$y = a(1-r)^t$$

Example #4: A new television costs \$1200. The value of the television decreases by 21% each year.

1. Write an exponential decay model giving the television's value y (in dollars) after t years.

2. Estimate the value of the television after 2 years.

3. Graph the model. Use the graph to estimate the year when the value of the television will be \$300.

