\qquad
\qquad Date: \qquad

NOTES: Section 7.2 - Graph Exponential Decay Functions

Goals: \#1 - I can graph exponential decay functions and state the domain and range.
\#2 - I can use an exponential decay model in a real life situation.
Homework: Lesson 7.2 Worksheet

Warm Up:

1. $f(x)=3 \cdot 2^{x-2}-1$
domain: \qquad
range: \qquad

2. You deposit $\$ 1500$ into an account that pays 3% annual interest compounded daily. What will be the balance in your account after 1 year?
3. In 1992, 1219 parakeets were observed in the United States. For the next 11 years, about 12% more parakeets were observed each year. Write an exponential growth model for the number of parakeets observed in the U.S. since 1992.

Exploration \#1: Work with a partner and answer the following questions.

1. Complete the table of vaules to graph the following function.

$$
y=\left(\frac{1}{2}\right)^{x} \quad \begin{array}{|c|c|}
\hline \boldsymbol{x} & \boldsymbol{y} \\
\hline-2 & \\
\hline-1 & \\
\hline 0 & \\
\hline 1 & \\
\hline 2 & \\
\hline
\end{array}
$$

\qquad
\qquad Date: \qquad

Notes:

An \qquad function has the form:
where $a \neq 0$ and the base b is a positive number other than 1.

If \qquad then the exponential function is an \qquad .

The graph falls from left to right, passing through the points $(0,1)$ and $(1, b)$.

Example \#1: Graph the function. Then state the domain and range.

1. $y=-2\left(\frac{3}{4}\right)^{x}$
domain: \qquad
range: \qquad

Example \#2: Tell whether the function represents exponential growth or exponential decay.

1. $f(x)=3\left(\frac{3}{4}\right)^{x}$
2. $f(x)=-4\left(\frac{5}{2}\right)^{x}$
\qquad
\qquad Date: \qquad

Notes:

To graph a function of the form $y=a \cdot b^{x-h}+k$, begin by sketching the graph of \qquad .

Then translate the graph \qquad by \qquad units and
\qquad by \qquad units.

Example \#3: Graph the function. Then state the domain and range.

1. $y=2\left(\frac{3}{5}\right)^{x-1}+1$

domain: \qquad
range: \qquad

You practice: Graph the function. Then state the domain and range.

1. $y=3\left(\frac{1}{2}\right)^{x+1}-2$

domain: \qquad
range: \qquad
\qquad Hour: \qquad Date: \qquad

Notes:

When a real-life quantity \qquad by a fixed \qquad each year (or other time period), the amount y of the quantity after t years can be modeled by the equation

$$
y=a(1-r)^{t}
$$

Example \#4: A new television costs $\$ 1200$. The value of the television decreases by 21% each year.

1. Write an exponential decay model giving the television's value y (in dollars) after t years.
2. Estimate the value of the television after 2 years.
3. Graph the model. Use the graph to estimate the year when the value of the television will be $\$ 300$.

