NOTES: Section 6.2 – Apply Properties of Rational Exponents

Goals: #1 - I can simplify a numerical expression using properties of radicals and rational exponents.

- #2 I can simplify a variable expression using properties of radicals and rational exponents.
- #3 I can add and subtract expressions with radicals and rational exponents.

Homework: Lesson 6.2 Worksheet

Warm Up:

1. Evaluate the expression without using a calculator.

a.
$$(\sqrt[4]{81})^4$$

b.
$$4^{5/2}$$

c.
$$(-32)^{3/5}$$

2. Solve the equation. Round your answer to the nearest hundredth.

a.
$$2x^5 + 73 = 53$$

b.
$$(x+3)^4 = 362$$

Review:

Recall the properties of exponents:

$$\bullet \ a^m \cdot a^n = a$$

•
$$(a^m)^n = a$$

•
$$(ab)^m = a \square b \square$$

•
$$a^{-m} = \frac{1}{a}$$

•
$$\frac{a^m}{a^n} = a$$

•
$$\left(\frac{a}{b}\right)^m = \frac{a}{b}$$

Example #1: Use the properties of rational exponents to simplify the expression.

a.
$$7^{1/4} \cdot 7^{1/2}$$

a.
$$7^{1/4} \cdot 7^{1/2}$$
 b. $(6^{1/2} \cdot 4^{1/3})^2$

C.
$$\frac{5}{5^{1/3}}$$

d.
$$\left(\frac{42^{1/3}}{6^{1/3}}\right)^2$$

You practice: Use the properties of rational exponents to simplify the expression.

a.
$$\left(\frac{20^{1/2}}{5^{1/2}}\right)^3$$

b.
$$(4^5 \cdot 3^5)^{-1/5}$$

c.
$$2^{3/4} \cdot 2^{1/2}$$

Review:

Recall the properties of radicals:

•
$$\sqrt[n]{a \cdot b} =$$

•
$$\sqrt[n]{\frac{a}{b}} =$$

Example #2: Use the properties of radicals to simplify the expression.

a.
$$\sqrt[3]{12} \cdot \sqrt[3]{18}$$

b.
$$\frac{\sqrt[4]{80}}{\sqrt[4]{5}}$$

Example #3: Write the expression in simplest form.

b.
$$\frac{\sqrt[5]{7}}{\sqrt[5]{8}}$$

You practice: Write the expression in simplest form.

a.
$$\sqrt[4]{27} \cdot \sqrt[4]{3}$$

b.
$$\frac{\sqrt[3]{250}}{\sqrt[3]{2}}$$

c.
$$\sqrt[5]{\frac{3}{4}}$$

Example #4: Perform the indicated operation. Assume all variables are positive.

a.
$$\sqrt[4]{10} + 7\sqrt[4]{10}$$

a.
$$\sqrt[4]{10} + 7\sqrt[4]{10}$$
 b. $2\left(8^{\frac{1}{5}}\right) + 10\left(8^{\frac{1}{5}}\right)$ c. $\sqrt[3]{54} - \sqrt[3]{2}$

c.
$$\sqrt[3]{54} - \sqrt[3]{2}$$

You practice: Perform the indicated operation. Assume all variables are positive.

a.
$$7\sqrt[5]{12} - \sqrt[5]{12}$$
 b. $\sqrt[3]{81} - \sqrt[3]{24}$

b.
$$\sqrt[3]{81} - \sqrt[3]{24}$$

c.
$$4\left(9^{\frac{2}{3}}\right) + 8\left(9^{\frac{2}{3}}\right)$$

Example #5: Write the expression in simplest form. Assume all variables are positive.

a.
$$\sqrt[3]{64y^6}$$

b.
$$\sqrt[4]{\frac{m^4}{n^8}}$$

c.
$$\sqrt[5]{4x^8y^{14}z^5}$$

d.
$$\sqrt[3]{\frac{x}{y^8}}$$

e.
$$3xy^{1/4} + 8xy^{1/4}$$

e.
$$3xy^{1/4} + 8xy^{1/4}$$
 f. $12\sqrt[3]{2z^5} - z\sqrt[3]{54z^2}$

You practice: Write the expression in simplest form. Assume all variables are positive.

a.
$$(27p^3q^{12})^{1/3}$$
 b. $\frac{14xy^{1/3}}{2x^{3/4}z^{-6}}$ c. $\sqrt[3]{6x^4y^9z^{14}}$

b.
$$\frac{14xy^{1/3}}{2x^{3/4}z^{-6}}$$

c.
$$\sqrt[3]{6x^4y^9z^{14}}$$

d.
$$\sqrt[7]{\frac{p^8}{q^5}}$$

e.
$$18\sqrt[3]{u} - 11\sqrt[3]{u}$$

e.
$$18\sqrt[3]{u} - 11\sqrt[3]{u}$$
 f. $10\sqrt[4]{5s^7} - s\sqrt[4]{80s^3}$