Name:	_ Hour:	Date:
-------	---------	-------

NOTES: Section 5.6 - Find Rational Zeros

Goals: #1 - I can find the possible rational zeros of a polynomial.

#2 - I can find all the real zeros of a polynomial.

Homework: Lesson 5.6 Worksheet

Warm Up:

1. Divide: $(6x^4 - x^3 - x^2 + 11x - 18) \div (2x^2 + x - 3)$

2. One zero of $f(x) = x^3 - x^2 - 17x - 15$ is x = -1. What are the other two zeros of the function?

Notes:

• ______:

If a ______ coefficients, then every

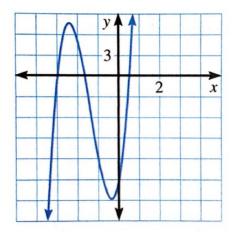
_____ of f has the following form:

Name:

Hour: _____ Date: ____

Example #1: List the possible rational zeros of f using the rational zero theroem.

1.
$$f(x) = x^3 + 2x^2 - 11x + 12$$


2.
$$f(x) = 4x^4 - x^3 - 3x^2 + 9x - 10$$

Example #2: Find all real zeros of $f(x) = x^3 - 8x^2 + 11x + 20$

You practice: Find all real zeros of $f(x) = x^3 - 4x^2 - 15x + 18$

Example #3: Use the graph to help find all real zeros of the function.

1.
$$f(x) = 6x^3 + 25x^2 + 16x - 15$$

Example #2: Find all real zeros of $f(x) = 3x^4 - 6x^3 - 32x^2 + 35x - 12$

You practice: Find all real zeros of $f(x) = 2x^3 + 5x^2 - 11x - 14$